
AD-A256 366 Taskbt, 70E
"wi' * ** g *j~CORI Sequence 07001-001i1iiiIIi~l I ii Mi II 11 o., Ilol28 February 1991

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE
SYSTEMS (STARS) PROGRAM

The Cleanroom Engineering Software Development Process

Contract No. F19628-88-D-0032

Task IR70E - Cleanroom Development Process

DTI4`_ E E c ' r dS~A
S- Prepared for:.

Eleftonle Systerns M~vlson
AMr Force System Command, USAF

Hanscom AFB, MA 01731-5000

S...... Prepared by:

S... . L.' ,,:7n cippyoved
. """•.i-, ,d 2Citie IBM Federal Sector Division

*f.,f:.b•i ,r i) unlimnited. __ _N rU 'dd k V 1
NO N0 oft Frederick Avenue

Galthersburg, MID 208B79 -2 0 7
O..,,*.A,.1t0D5 92--26076

'9 jq;b I U5Ili'!
This "r,,. has., boon , .. ,,ro,., for p.,,l, r.,.. .i

REPORT DOCUMENTATION PAGEj z:-oa
0ai W.o 1= |4 ism. "* M

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

2/28/91 Initial
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

The Cleanroom Engineering Software Development Process F19628-B8-D-0032 / 0002

6. AUTHOR(S)

Richard H. Cobb, Ara Kouchakdjian, Harlan D. Mills
Software Engineering Technology, Inc.

7. PERFORMING ORGANIZATION NAME(S) AND AODRESS(ES) 8. PERFORMING ORGANIZATIONREPORT NUMBER

IBM Federal Systems Company

800 North Frederick Avenue 07001-001
Gaithersburg, MD 20879

9. SON#SORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING IMONITORING
AGENCY REPORT NUMBER

Electronic Systems Center/AVK
AP

Air Force Systems Command, USAF
Hanscom Air Force Base, MA 01731-5000

11. SUPftEMENrARY fnOTES

N/A

12a. DISTRIMUTIONIAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Cleared for public release

13. ASST.tACT iMaximum 200 words)

Cleanroom provides software developers with the basis for developing software under
statistical quality control. Software is functionally verified and certified, not
tested, using sampling techniques, thus permitting software developers to assert a
mean time to failure (MTTF) for the software modules they develop.
Under the STARS Contract, the IBM STARS team developed a process manual to assist
software development organizations in adopting and installing the Cleanroom
Engineering Software Development Process. This manual describes the process and
verification activities required for performing a Cleanroom Engineering effort from
the standpoint of specifiers, developers, certifiers, and managers.
The manual was developed to support process improvement programs directed at
improving software quality and development productivity by incorporating some or all
of the Cleanroom Engineering software development technologies into their current
software development process and practices.

14. JudJCT TERMS 15. NUMBER OF PAGES

Process, Process Management, Defined Process, Cleanroom, 302
Software Engineering 16. PRICE CODE

N/A
17. '.CURIrY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CIASSIFICAIIOJ 20. LIMITATION OF ABSTRACT

C!: -. EPORT OF T.41S PAGE OF ABSTRACTUnclassified .Unclassified Unclassified SAR

"•,anoard Formn ,98 "2ev 2-89)

SET-IR70 Table of Contents

Table of Contents

Page
1. A Cleanroom Engineering Process Model

.1i Readers Guide 1-1
1.2 Principal Findings 1-4
1.3 IR-70 Project Profile 1-5
1.4 Acknowledgements 1-5

2. The Cleanroom Engineering Process: The Management Basis
2.1 Why Cleanroom Engineering? 2-1
2.1.1 Cleanroom Engineering Goals 2-1
2.1.2 The Basis For Cleanroom Engineering 2-1
2.1.3 Software Testing In This First Human Generation 2-2
2.1.3.1 Unit Testing As A Private Activity 2-2
2.1.3.2 A Historical Lesson in Typewriting 2-3
2.1.3.3 Zero Defect Software is Really Possible 2-4
2.1.4 What is Cleanroom Engineering of Software? 2-6
2.1.5 Cleanroom Software Engineering Methods 2-7
2.1.6 Dealing with Human Fallibility 2-8
2.1.7 The Power of Usage Testing over Coverage Testing 2-9
2.2 Mathematical Basis of Software Design 2-11
2.2.1 Box Structured Software System Design 2-11
2.2.2 Stepwise Refinement and Functional Verification 2-13
2.2.3 The Mathematical Basis for Functional Verification 2-13
2.2.4 Functional Verification of Program Parts 2-14
2.3 Software Engineering under Statistical Quality Control 2-16
2.3.1 Statistical Certification 2-16
2.3.2 Certification Tasks 2-17
2.3.3 The Certification Model 2-17
2.3.4 The Certification Process 2-18
2.4 Human Issues of Cleanroom Engineering 2-19
2.4.1 Cleanroom Teams 2-19
2.4.2 Developing The Specification 2-20
2.4.3 Developing a Construction Plan 2-22
2.4.4 Developing And Certifying Software 2-23
2.4.5 Human Factors 2-25
2.5 References 2-26

3. Developing A Box Structures Model
3.1 Process M odels 3-1 ---

3.1.1 Box Structures of Processes 3-1
3.1.2 Components Of A Software Development Process Model 3-2
3.1.3 Realizations of Process Models (or what-to-do) 3-2
3.1.4 Engineering Practices (or how-to-do-it) 3-3

1)i±C Q.kM; q LTy L.Nij ,ED G 3 i-- -

Page iii The Cleanroom Engineering Software Development Process 2/28/91

Table of Contents SET-IR70

Page

3.1.5 Completion Conditions (or when-it-is-done) 3-3
3.1.6 State Data (or where-to-put-it) 3-3
3.1.7 Measuring Quality and Productivity (or measuring how

well it has been done) 3-4
3.1.8 Using A Process Model 3-4
3.2 Guide To The Process Model 3-5
3.3 Stimuli to First Level Cleanroom Engineering Black Box 3-6
3.4 Responses to First Level Cleanroom Engineering Black Box 3-8
3.5 First Level Cleanroom Engineering Black Box 3-11
3.6 State Data: A Summary 3-11
3.7 First Level Cleanroom Engineering State Box 3-16
3.8 First Level Cleanroom Engineering Clear Box 3-16
3.9 Second Level Cleanroom Boxes 3-20
3.9.1 Program Management 3-20
3.9.2 Project Information Management 3-23
3.9.3 Software Solution Specification 3-26
3.9.4 Software Development and Certification 3-28
3.9.5 The Detailed Cleanroom Process 3-30
3.10 Project Reviews 3-30
3.10.1 The Purpose Of Project Reviews 3-30
3.10.2 Project Reviews and Cleanroom Engineering 3-33
3.10.3 A Feasible Review Schedule For Cleanroom Projects 3-34
3.11 Model Comparison 3-35
3.12 Using The Process Model 3-39

4. Process Basis For Cleanroom Engineering
4.0 Process EO - Cleanroom 4-3
4.1 El: Project Invocation 4-7
4.2 E2: Program Management 4-9
4.3 E3: Project Information Management 4-13
4.4 E4: Software Solution Specification 4-17
4.5 ES: Software Development and Certification 4-21
4.6 E6: Prepare Final Project Releases 4-25
4.7 E7: Maintain Project Schedule 4-27
4.8 E8: Prepare For and Conduct Project Review 4-31
4.9 E9: Prepare and Submit Project Status Reports 4-35
4.10 ElO: Receive Stimuli 4-39
4.11 Ell: Submit a Question or Issue 4-41
4.12 E12: Understand Problem Domain 4-43
4.13 E13: Understand Solution Domain 4-47
4.14 E14: Write Specifications 4-51

2/28/91 The Cleanroom Engineering Software Development Process Page iv K

SET-1R0O Table of Contents

Page

4.15 El5: Write Construction Plan 4-55
4.16 E16: Increment Development 4-59
4.17 E17: Increment Certification 4-61
4.18 E18: Develop Increment i 4-65
4.19 E19: Develop Certification Plan and Tests for Increments 1...i 4-69
4.20 E20: Update Specifications 4-73
4.21 E21: Increase Understanding of Problem and Solution Domain

as Required 4-75
4.22 E22: Build System with Incrementj 4-77
4.23 E23: Certify Increments I...j 4-81
4.24 E24: Correct Code Increment 1...j 4-85

5. State Data For Cleanroom Engineering
5.0 State Data Summarized 5-1
5.1 TI: Project Document File 5-7
5.2 T2: Software Specification Files 5-10
5.3 T3: Software Development Files 5-13
5.4 T4: Software Certification Files 5-17
5.5 T5: Program Management Files 5-20
5.6 T6: Unresolved Questions or Issues 5-23
5.7 Ti: Pre-Release Software 5-23
5.8 T8: Failure Reports and Engineering Changes 5-28

6. Responses For Cleanroom Engineering 6-1

7. Managing a Cleanroom Project
7.1 Productivity 7-1
7.2 Process Models and Productivity 7-2
7.3 Process Models and Management 7-3
7.3.1 Organizing In A Cleanroom Environment 7-3
7.3.2 Planning In A Cleanroom Environment 7-6
7.3.3 Directing In A Cleanroom Environment 7-8
7.3.4 Measuring In A Cleanroom Environment 7-10
7.3.5 Controlling In A Cleanroom Environment 7-11
7.4 Process Improvement 7-11

8. Cleanroom Specification Team Practices
8.1 Specifications and Construction Planning 8-1
8.2 The Specification Documents 8-2
8.3 Recording the Specification 8-12
8.4 Developing the Expected Usage Profile 8-12

Page v The Cleanroom Engineering Software Development Process 2V28191

Table of Contents SET-IR70

Page

9. Cleanroom Development Team Practices
9.1 Stepwise Refinement 9-3
9.2 The Box Structures Design Algorithm 9-4
9.3 Box Structures Verifications 9-12
9.4 Stepwise Refinement Using Structured Programming 9-13
9.5 Structured Programming Language Verifications 9-17
9.6 Conducting Proof Reviews 9-22
9.7 Working with the Certification Team 9-24
9.8 Working with the Specification Team 9-24

10. Cleanroom Certification Team Practices
10.1 Preparing the Sampling Plan 10-2
10.2 Preparing Test Cases: The Monte Carlo Method 10-5
10.3 Running Test Cases 10-8
10.4 Testing Results and Analysis 10-9
10.5 Working With The Certification Model 10-11
10.6 Configuration Management 10-12
10.7 Working With The Development Team 10-12
10.8 Working With The Specification Team 10-12
10.9 An Integrated Program of Usage Testing 10-14

2/28/91 The Cleanroom Engineering Software Development Process Page vi

SET-[R70 Figure Lis

Figure List

Page

Section 2. The Cleanroom Engineering Process: The Management Basis
2.1.7.1 Distributions of Errors (In %) Among Mean Tune

to Failure (M1TF) Classes 2-10
2.1.7.2 Error Densities and Failure Densities in the MTTF

Classes of Table 2.1.7.1 2-10
2.4.2.1 Typical Organization of a Cleanroom Project 2-21
2.4.3.1 Difference Between Conventional and Cleanroom

Incremental Construction Strategies 2-22
2.4.3.2 Cleanroom Incremental Testing Strategy Illustrated 2-23
2.4.3.3 Typical Cleanroom Construction Plan 2-24

Section 3. Developing A Box Structures Model
3.5.1 Black Box for Cleanroom 3-12
3.7.1 State Box for Cleanroom 3-17
3.8.1 Clear Box for Cleanroom 3-21

Section 4. Process Basis For Cleanroom Engineering
4.0.1 Cleanroom Process 4-3
4.1.1 Project Invocation Process 4-7
4.2.1 Program Management Process 4-9
4.3.1 Project Information Management Process 4-13
4.4.1 Software Solution Specification Process 4-17
4.5.1 Software Development and Certification 4-21
4.6.1 Prepare Final Project Releases Process 4-25
4.7.1 Maintain Project Schedule Process 4-27
4.8.1 Prepare For and Conduct Project Review Process 4-31
4.9.1 Prepare For and Submit Project Status Reports Process 4-35
4.10.1 Receive Stimuli Process 4-39
4.11.1 Submit a Question or Issue Process 4-41
4.12.1 Understand Problem Domain Process 4-43
4.13.1 Understand Solution Domain Process 4-47
4.14.1 Write Specifications Process 4-51
4.15.1 Write Construction Plan Process 4-55
4.16.1 Increment Development Process 4-59
4.17.1 Increment Certification Process 4-61
4.18.1 Develop Increment i Process 4-65
4.19.1 Develop Certification Plan and Tests For Increments 1...i Process 4-69
4.20.1 Update Specifications Process 4-73
4.21.1 Increase Understanding of Problem and Solution

Domain as Required Process 4-75
4.22.1 Build System with Increment j Process 4-77

Page vii The Cleanroom Engineering Software Development Process 2/28/91

Figure List SET-IR70

Page

4.23.1 Certify Increments 1...j Process 4-81
4.24.1 Correct Code Increment 1...j Process 4-85

Section 5. State Data For Cleanroom Engineering
5.0.1 State Data Usage By Process 5-8
5.1.1 Project Document State Data Usage by Process 5-11
5.2.1 Software Specification State Data Usage by Process 5-14
5.3.1 Software Development State Data Usage by Process 5-18
5.4.1 Software Certification State Data Usage by Process 5-21
5.5.2.1 Task Assignment 5-22
5.5.1 Project Management State Data Usage by Process 5-24
5.6.1 Issue/Question Form 5-25
5.6.1 Questions or Issues State Data Usage by Process 5-26
5.7.1 Pre-Release Software State Data Usage by Process 5-29
5.8.1 Failure Reports and Engineering Changes State Data

Usage by Process 5-30

Section 8. Cleanroom Specification Team Practices
8.2.1 Software Specifications: Typical Outlines 8-4
8.4.1 Program States for a Glider 8-12
8.4.2 State Transition Matrix 8-15
8.4.3 Typical Usage Profile 8-15
8.4.4 Execution Path and Decision Tree Examples 8-17
8.4.5 State Frequencies and State Probabilities 8-18

Section 9. Cleanroom Development Team Practices
9.2.1 Syntax for Box Functions 9-7
9.2.2 Program Tables for Box Functions 9-10
9.2.3 The Box Structures Software Design Algorithm 9-11
9.3.1 Expansion and Derivation Between Box Structures 9-13
9.4.1 Stepwise Refinement 9-14
9.4.2 Program Abstraction, Expansion and Comparison 9-15
9.4.3 Stepwise Expansion 9-16
9.4.4 Useful Rules to be Followed When Writing Code 9-17
9.5.1 The Correctness Theorem 9-18
9.5.2 Working Questions for Program Correctness 9-19
9.5.3 Trace Table for Sequence Structure 9-21
9.5.4 Iteration Recursion Lemma 9-22
9.5.5 While-loop Trace Table 9-23

2/28/91 The Cleanroom Engineering Software Development Process Page viii

SET-r70 Figure List

Page

Section 10. Cleanroomn Certification Team Practices
10.2.1 Continuous and Discrete Monte Carlo Method 10-6
10.2.2 A Typical Script Generation Rule 10-7
10.2.3 A Typical Test Script Fragment 10-7
10.2.4 A Test Case 10-8
10.3.1 Test Solution 10-9
10.4.1 Software Failure Report 10-10
10.6.1 Engineering Change Notice 10-13
10.9.1 Reliability Projections for a Three-Pronged Testing

Approach 10-15

Page ix The Cleanroom Eneineerine Software Develonment Proce- /?ý/rf

SET-R7o

Section 1
A Cleanroom Engineering Process Model

This report has been prepared by Software Engineering Technology (SET). The objective of this
report is to provide a manual that will help organizations utilize the Cleanroom technologies. SET received
partial funding to complete this manual from the U.S. Defense Department under the DARPA STARS
program (IBM P.O. 308334-PJ, Task IR-70 Extended). The task objective was:

To develop a manual that software development managers can use to support process
improvement programs directed at improving software quality and development productivity
by incorporating some orall of the CleanroomEngineering software developmenttechnologies
into their current software development process and practices.

The manual is designed to help answer the following question that is typical of the reaction of many software
development managers when they learn about Cleanroom,

"The Cleanroom ideas sound fine, but how do we fit them into our current software
development practices."

This section is divided into three parts. The first part is a brief reader's guide designed to introduce
the reader to the manual. The second part is a brief summary of the principal findings resulting from this
effort. The final part is a brief profile of the IR-70 Extended task.

1.1 Readers Guide

The manual has 9 sections and an Appendix A in addition to this introductory section. Section 2 -
Section 6 define the Cleanroom Engineering process in a Box Structures framework.

Section 2 The Cleanroom Engineering: The Management Perspective

This section reviews the Cleanroom technologies to establish a common level of understanding of
the Cleanroom ideas for developing software under statistical quality control. This section concludes
with a complete list of Cleanroom references.

Section 3 A Box Structures Model For Cleanroom Engineering

A prerequisite to developing a ueulprocess manual is the use of a model (abstraction) of the process.
Such a model permits people who want to develop a specific realization of the process for some
intended purpose to reason about the process abstractly. In this way a user can easily adopt the
process to meet the individual concerns of the project by using the model. In this section a model
of the full software development process incorporating the Cleanroom technologies is developed.
Box Structures, which is one of the Cleanroom technologies, is used to develop and document the
model.

2/28/91 The Cleanroom Engineering Software Development Process Pase 1.1

SET-IR70 Section 1: A Cleanroom Engineering Process Model

Section 4 Process Basis For Cleanroom Engineering

This section fills in all the details of 25 interrelated processes defined for the Cleanroom process
model. Using this section, organizations can develop a realization of the Cleanroom Engineering
process for a specific project. When developing the realization, the manager can specialize or adjust
the model (1) to reflect organizational specific concerns, (2) to select only a subset of the Cleanroom
Engineering practices or (3) to improve the process in a continuous program of process improvement.

Section 5 State Data For Cleanroom Engineering

A unique feature of this model is the concept of modeling the work-in-process as state data instead
of finished products. This feature has the following advantages: (1) it makes the model easier to read
and use, (2) it represents how developers actually work, and (3) it makes it easier to tailor the model
to new and modified situations. This section summarizes the requirements for state data files to
facilitate the development of state data files for a specific project.

Section 6 Responses For Cleanroom Engineering Projects

This is a short section which summarizes the thirteen responses that result from a software
development project.

Previous sections have looked at the Cleanroom process in its entirety. Sections 7 - 10 examine at
the Cleanroom process from the vantage point of people who use the Cleanroom practices - the engineering
manager and three engineering teams.

Section 7 Managing A Cleanroom Project

This section looks at the model from the vantage point of a manager. The manager uses the model
to organize a project by putting in place a concrete realization of the process and then using the
realization to produce the desired software.

Section 8 Cleanroom Specification Team Practices

This section examines the process model from the vantage point of the Specification team. The
Specification team is responsible for developing the specifications and verifying that if software is
developed in a pipeline of accumulating increments, in accordance with the specifications, the
software will achieve the mission assigned to the software.

Section 9 Cleanroom Development Team Practices

This section examines the process model from the vantage point of the Development team. The
Development team is responsible for developing and verifying that the software as designed is in
accordance with the specifications.

Page 1-2 The Cleanroom Engineering Software Development Process 2/28/91

Section 1: A Cleanroom Engineering Process Model SET-IR70

Section 10 Cleanroom Certification Team Practices

This section examines the process model from the vantage point of the Certification team. The
Certification team is responsible for certifying the reliability of the software. Software reliability is
defined by how often the software produces the output defined by the specifications or in terms of
how long a user can expect to use the software before encountering a result that is not in accordance
with the specifications.

Besides meeting the needs of the manager who wants to use Cleanroom Engineering on a software
project, this manual provides assistance to two other audiences. First, managers and others who are trying
to understand Cleanroom processes can learn about Cleanroom from a new perspective that some may find
helpful. Second, process researchers who are interested in studying software development processes will
find the manual helpful in two ways: (a) they can learn about Cleanroom, and (b) they can study how Box
Structures were used to support the modeling effort so they can use these ideas in their own modeling efforts.

In the following paragraphs a list of the information which has not been published before is provided

so the Reader familiar with Cleanroom can easily find the new informnation.

Section 2 Cleanroom Engineering: The Management Perspective

All the material in this section has been published before; but this is the first time all this material has
been collected and published in a single, comprehensive description of Cleanroom Engineering.

Section 3 A Box Structures Model For Cleanroom Engineering
Section 4 Process Basis For Cleanroom Engineering

This material is all new since no process model of Cleanroom Engineering has ever been developed.
Box Structures have never been used before to define a model of a process that is complex as software
development. This modeling process has proven to be very successful so in addition to providing
a useful model, these two sections provide an interesting case study.

Section 5 State Data For Cleanroom Engineering

The idea of treating the in-process work associated with software development as state data instead
of products is a new idea. This treatment seems to be more representative of how people actually
work and, as a result, permits the model to be considerably simpler.

Section 6 Responses For Cleanroom Engineering Projects

Same comments as for Sections 3 and 4.

Section 7 Managing A Cleanroom Project

All material in this section has been implied before in writings directed at the engineer, but they have
never been stated from the perspective of the project manager.

2!28/91 The Cleanroom Engineering Software Development Proces. P;ace 1.3

SET-IR70 Section 1: A Cleanroom Engineering Process Model

Section 8 Cleanroom Specification Team Practices
Section 9 Cleanroom Development Team Practices
Section 10 Cleanroom Certification Team Practices

Much of this material has never previously been discussed in this form except in SET's Cleanroom
education material. This is especially true for Sections 8 and 10.

1.2 Principal Findings

For the convenience of the reader, the principal findings of the effort that led to the preparation of
the process manual are summarized in this section.

The Box Structures modeling process performed very well.

Evidence: Software development is a complex activity, and the model seems to be useful.

Recommendation: Box Structures should be used to support many more modeling efforts.

The modeling of in-process work as state data was both convenient and seems to represent the way people
actually develop software.

Evidence: The simplicity of the model.

Recommendation: Organizations should begin to manage in-process work as state data. This will
require some real-world experience to learn exactly how to make this transformation in thinking.

The process model appears to meet the needs of the manager who wants to incorporate Cleanroom into a
project.

Evidence: Positive comments from people who have been exposed to the model.

Recommendation: The model should now be tested and perfected on real-world projects.

Cleanroom technologies simplify both the process of developing software and the management of software
development activities.

Evidence: The model.

Recommendation: Cleanroom Engineering should be adopted by all organizations that want to
improve the quality of their software and the productivity with which they develop software.

Cleanroom Engineering can be gracefully adapted by software engineering organizations.

Evidence: The model.

Recommendation: Organizations should use this manual to tailor a software development process
that includes Cleanroom for their organization.

Page 1-4 The Cleanroom Engineering Software Development Process 2/28/91 -

Section 1: A Cleanroom Engineering Process Model SET-IR70

1.3 ER-70 Project Profile

SET, under a subcontract to IBM Federal Sector Division, initiated the adaptation of Cleanroom
Software Engineering ideas and concepts to the STARS environment under Task IR-70. The first phase of
the effort recast the Cleanroom ideas into the STARS environment (September 30, 1989, CDRL 1710
entitled STARS - Cleanroom Reliability: Cleanroom Ideas In The STARS Environment). The second phase
was a case study involving development and certification of a software system consisting of a mixture of
reused and newly written Ada modules (May 30,1990, CDRL 1940 entitled A Case Study Using Cleanroom
With Box Structures ADL). The third phase of the Task has involved the development of a Cleanroom
Engineering Process manual.

The Cleanroom Engineering process for software development is based on three major activities:
specification, development, and certification. Initially, the process manual was conceived as a document
with separate sections (i.e., binders assigned CDRL's) to cover these activities. As the Cleanroom software
development process was refined to provide a "what-to-do" road map for planning and controlling a
Cleanroom software project, the separate binder approach was determined to be inadequate. The model that
finally evolved as the best approach to present the process requires'the definition of all the engineering
processes used, the control structure between processes, the state data required to maintain the current state
of design and processes used for maintaining the state data. This final IR-70 report presents an integration
of the separate binders into a unified Cleanroom Engineering process described in a hierarchy of 25 sub-
processes in which the specification, development, and certification activities play integrated roles.

1.4 Acknowledgments

SET would like to acknowledge the financial support received from the U.S. Defense Department
under the DARPA STARS program and the encouragement received from the IBM STARS team in the
preparation of this manual. SET also wants to acknowledge all the Cleanroorm engineers who, through th-'r
questions and shared experiences, contributed to this manual by increasing our understanding of how i
develop and certify software using the Cleanroom technologies.

2/28/91 The Cleanroom Engineering Software Development Process Pane 1-5

SET-IR70 Section 1: A Clasroom Engineering Process Model

Page 1-6 The Claanroom Engineering Software Development Process 2/28/91 U

SET-ER70

Section 2
The Cleanroom Engineering Process: The Management Basis

2.1 Why Cleanroom Engineering?

2.1.1 Cleanroom Engineering Goals

The Cleanroom Engineering goal is to create an entirely new human capability for developing zero-
defect software products and systems with high productivity.

The ultimate goal of the Cleanroom Engineer is to develop failure-free software. Cleanroom
Engineers strive for zero-defect software by utilizing rigorous practices during design and development to
implement a quality system and statistical quality control methods to certify reliability. These practices not
only improve product quality but also increase development productivity.

Cleanroom Engineering of Software has been demonstrated as feasible and beneficial in both
productivity and quality in software development. The idea driving the development of Cleanroom
Engineering was that by first developing and then applying proper mathematical rigor to the engineering of
software, essentially failure-free software could be developed. The effort started some 25 years ago at IBM.
The Cleanroom ideas have been continuously refined, both as a result of theoretical investigations and field
use. Section 2.4 contains references to 25 books and papers covering 20 years, many of which document
this work. Progress has been significant. Today, several leading-edge organizations are using Cleanroom
technologies to develop software.

Cleanroom Engineers are developing significant software systems of very high quality. There are
several examples of widely used failure-free software (i.e., no user has yet encountered a failure). Current
quality metrics in terms of latent defect rate per 1000 Lines Of Code (KLOC) at delivery for software
development organizations are as follows: traditional practices (bottom-up design, structured code, defect
removal through testing) 15-18 defects/KLOC; modem practices (top-down design, structured programming,
design/code inspections, etc.) 2-4 defects/KLOC; and Cleanroom Engineering (0-1 defects/KLOC).

Users of Cleanroom are now targeting to release 100 KLOC systems that, more often than not, have
no failures found during software use. They expect, as they move up the learning curve, to develop even
larger failure-free systems. The surprise to many is that Cleanroom developers also increase their
productivity along with achieving these much higher quality levels. Productivity rates of 750 lines of code
per staff month are achieved with Cleanroom projects compared to the typical 75-250 lines of code per staff
month being achieved by developers using modern programming practices. The reason? It is less costly to
design the software in a manner that avoids failures than it is to test in quality into a failure-laden product
(where defects have been designed in as a result of using inadequate engineering practices).

2.1.2 The Basis For Cleanroom Engineering

Cleanroom Engineering is made up of three major activities; namely, Software Specification,
Software Development, and Software Certification. Software Specification and Software Development
are based on well known formal methods in computer science and software engineering. Software
Certification is based on statistical methods typically found outside computer science and software
engineering, yet well known and practiced in other engineering and manufacturing fields.

2/28/91 The Cleanroom Engineering Software Development Process Page 2-1

SET-IR70 Section 2: The Cleanroom Engineering Process: The Management Basis

Many people presently believe that software has nothing to do with Statistical Quality Control
because software is deterministic, not statistical, with results that are either right or wrong. In this view,
software is bound to have periodic failures; and "good" software just exhibits fewer failures than poor
software. Statistical Quality Control in manufacturing or services assumes a correct design and deals with
efforts to produce products consistent with such a design. In that case, the statistics deal with departures of
the product from the design. With software the situation is reversed. In software the manufacture is
practically perfect in terms of program compiling, linkage editing, etc. It is the design itself which is under
question and the statistics deal with departures of the design from the specifications that are discovered
during use.

In order to certify the reliability or quality of software, it is necessary to use a tesLing program that
yields meaningful measurements which can serve as a basis for estimating how well the software as designed
and implemented will satisfy its requirements in actual use. In the past few years significant progress has
been made in recognizing how to use statistics to measure software quality.

The fields of statistics and software engineering are merging. As a result the software development
industry is at the beginning of a very exciting time. This symbiosis is likely revolutionize software
development, just as the symbiosis of statistics and manufacturing has revolutionized how factories are
operated and managed. Cleanroom Engineers are now beginning this revolution.

Cleanroom Engineering develops software of certified reliability under statistical quality control
in a pipeline of increments that accumulate into the specified software product. In the Cleanroom process,
no program debugging is permitted before independent statistical usage testing of the increments as they
accumulate into the final product. The Cleanroom development process provides rigorous methods of
software specification, development and certification, through which disciplined software engineering
teams are capable of producing low- or zero-defect software of arbitrary size and complexity. Such
engineering discipline is not only capable of producing highly reliable software, but also the certification of
the reliability of the software as specified.

Of course, humans are fallible, even in using sound mathematical processes such as functional
verification, so software failures are possible during the Cleanroom certification process. However, there
is a surprising power and synergy between functional verification and statistical usage testing. First, it has
been found that functional verification scales up to large problems with high productivity and still leaves
fewer errors than heuristic programming often leaves after unit and system testing combined. And second,
it turns out that the mathematical errors left are much easier to find and fix during certification testing than
errors left behind in debugging. This contrast has been measured to be a factor of five in practice [141.

2.1.3 Software Testing In This First Human Generation

2.1.3.1 Unit Testing As A Private Activity

In this first generation of software development and maintenance, the primary methods of software
specification and design have been heuristic, going from informal natural language to formal programming
language by trial and error. Unit testing is used without question and is regarded as a private activity for
getting defects out of the small parts of programs before assembling and integrating them into larger parts.
Subsequently, more defects are discovered in the largerparts as smaller parts are tied together. Finally, entire

Page 2-2 The Cleanroom Engineering Software Development Process 2/28/91 3

Section 2: The Cleanroom Engineering Process: The Management Basis SET-IR70

systems are frequently (almost always) delivered with more defects yet to be found. Users frequently find
many more defects than the developers believed remained. As a result, many organizations have learned to
expose new software products to a select few users for initial shakedown before widely distributing the
products.

This first generation of heuristic methods and experiences seem to work. After all, products are built.
Advanced software teams do better than others in using the best technical and management methods that can
be found. And yet, even the advanced teams stub their software toes now and then. In fact, with all the
programs written, more systems and products than casual observers might imagine are seriously delayed or
abandoned, too error prone to be released. Hundreds of staff years may be involved, but the software still
cannot be made to work correctly. Recently, an entire airline reservation system could not be made to work
and was never put into operation. The first complete PI1 compiler of a major computer company, involving
more than a hundred staff years in development, was never released. Although the private unit debugging
was done, the entire compiler could not be made to work. Several major PC upgrade products for word
processing and financial analysis have been released more than a year behind their announcements, at a major
cost to their producing companies.

The strange thing about most software disasters is that they were not seen as dangerous undertakings
in their beginnings. Of course, any software effort is a bit risky because computer code is so detailed and
programmers are a little unpredictable. "Nobody said it would be so hard at the outset," is a typical comment.
New and better heuristics, especially supported by CASE tools, are coming available in object-oriented
methods. With object-oriented methods, better approaches to high level designs and specifications seem
possible. The software rubber meets the hardware road with the program code, and unit debugging is seldom
questioned. At that stage, larger parts and entire products are tested, often with good records kept on the
coverage testing, to ensure that every branch is exercised both ways and that all code is tested at least once.
Yet in spite of the testing coverage, users often find unexpected levels of failures in operations, making the
product marginal or unacceptable.

A barely recognized fact is that unit debugging is the most error prone activity in software
development today. Developers fix user-observed failures by isolating and modifying what they believe is
the cause for the failure, which is called a fault. Fixing a fault found is usually successful. But creating a
new and deeper fault sometimes occurs as often as one time in five, and almost always as often as one time
in ten. This occurs because debugging strives to ensure correct outputs, which lead to developers modifying
code to produce a correct output, and not modifying the code to produce the correct rule that implements the
function. As a result, large failure-filled software systems may never be debugged sufficiently to be released,
even though extensive efforts are made.

2.1.3.2 A Historical Lesson in Typewriting

These experiences are not surprising in this first human generation of software development. They
just seem part of the problem facing people in the field. Or are they? A hundred years ago people faced
another set of problems in using the new typewriters (this practical invention occurred late in the 19th
century): how to type text and tabular material without errors at reasonable rates.

Typewriters were special machines for special purposes. Executives hand wrote their own letters by
and large, and assistants or secretaries did likewise. Typewriters were used to write reports and documents

2/2A /91 The Cleanroom Engineering Software Development Process Page 2-1

SET-IR70 Section 2: The Cleanroom Engineering Process: The Management Basis

with relatively poor quality reprints compared to printing. They certainly did not replace assembling print
for printing machines.

Typewriting was error prone. One had to look at the keys, of course, while typing, so a reasonable
way was to memorize the text one sentence at a time. But in going back and forth between the text and the
typewriter, small mistakes or lapses were very possible from time to time. Correcting a character, even a
word, was acceptable; but correcting a missed sentence early on a typed page was better fixed by starting
the page over.

With this background for almost a human generation of using typewriters, the new idea of touch typing
(typing without looking at the keys) was a very strange one. "That's silly. Who could possibly do that?"
In teaching typewriting, people who look at the keys can get useful work done in the very first day. In fact,
they learn practically all there is to know about a typewriter in the very first day, and just need to get more
practice and skill by typewriting. In teaching touch typing, people get no useful work done in the first day
or even the first week. "Why would anyone spend time in such a useless activity?" Of course, touch typing
turned out to be an internationally useful method that put typewriters into business offices on a mass basis.
Typewriter makers improved their products in many ways, but the reason typewriters were made in such
quantities was due to people knowing how to use them well rather than companies knowing how to make
them well.

There is a lesson in touch typing for software development. In software, teaching a programming
language and how to compile and execute programs allows people to write programs right away. Very likely,
such programs will require considerable debugging, and many text books say just that. With more and more
experience in programming alone or in teams, errors and unit debugging are just an accepted and integral
part of traditional programming efforts.

People with the right education and training do not need to unit debug their software any more than
people need to look at the keys when they type. Just as in teaching touch typing, much less trial-and-error
programming is now done at the beginning in good software education. There is also much greater emphasis
on formal methods in program specification, design and verification. When serious programming begins
only after formal methods, very little debugging will be required because of more explicit design and
verification from specifications. "Why not let the computers find the errors? Why make so much of a simple
program?" For simple programs that may be a perfectly good question. But as programs become larger and
more complex, computers do not find the errors, and much more time will be spent debugging than writing
the code originally.

2.1.3.3 Zero Defect Software is Really Possible

In spite of the experiences of this first human generation in software development, zero-defect
software is really possible. However, there is no foolproof logical way to know that software is zero defect.
The proof is in using the product without ever finding any failures.

Mathematics is very helpful in creating software that executes with zero defects. It is insufficient to
guarantee it, in part due to human fallibility in using mathematics, in part to mathematics itself in logical
incompleteness. Statistics is also very helpful in creating software that executes zero defect, but it is also
insufficient. For example, given a program that has been tested statistically without failures, (say for time

Page 2-4 The Cleanroom Engineering Software Development Process 2/28/91 3

Section 2: The Cleanroom Engineering Process: The Management Basis SET-1R30

T of execution) a minimax argument permits a statement that estimates the Mean T'ime to Failure (MTTF)
as 2T. The program may then be used many times T with no failures, and the MTIF goes up accordingly.
As noted, the proof is in the usage.

Three illustrations of zero-defect software follow.

First, the U.S. 1980 Census was acquired by a nationwide network system of 20 miniprocessors. The
system was controlled by a 25 KLOC program, which operated its entire ten months in field use with no
failure observed. It was developed by Paul Friday, of the U.S. Census Bureau, using stepwise refinement
and functional verification in Pascal. Mr. Friday was given the highest technical award of the U.S.
Department of Commerce for that achievement.

Second, the IBM wheelwriter typewriter products released in 1984 are controlled by three
microprocessors with a 65 KLOC program. It has had millions of users with no failures detected. The IBM
team creating this software also used functional verification and extensive testing in a well managed
environment to achieve this result.

Third, the U.S. space shuttle software of some 500 KLOC, while not completely zero defect, has been
zero defect in all flights. The IBM team also used stepwise refinement and functional verification, and
extensive testing to achieve that result. The space shuttle software is such a large, complex and visible
product that there are real lessons in it. All progranmers were required to complete a basic curriculum of
six pass/fail courses in understanding programs as rules for mathematical functions, and functional
verification of programs and modules [8].

Several illustrations of early Cleanroom projects follow.

The IBM COBOL Structuring Facility, a complex product of some 80K lines of PL/I source code,
was developed in the Cleanroom discipline, with box structured design and functional verification but no
debugging before usage testing and certification of its reliability.

The IBM COBOL Structuring Facility (SF) converts an unstructured COBOL program into a
structured one of identical function. It uses considerable artificial intelligence to transform a flat structured
program into one with a deeper hierarchy that is much easier to understand and modify. The product line
was prototyped with Cleanroom discipline at the outset, then individual products were generated in
Cleanroom extensions. In this development, several challenging schedules were defined for competitive
reasons, but every schedule was met.

The COBOL/SF products have high function per line of code. The prototype was estimated at 100
KLOC by an experienced language processing group, but the Cleanroom developed prototype was 20
KLOC. The software was designed not only in structured programming, but also in structured data access.
No arrays or pointers were used in the design; instead, sets, queues, and stacks were used as primitive data
structures [15]. Such data structured programs are more reliably verified and inspected, and also more
readily optimized with respect to size or performance, as required.

COBOL/SF, Version 2, consisted of 80 KLOC, 28 KLOC reused from previous products, 52 KLOC
new or changed, designed and tested in a pipeline of five increments [7], the largest was over 19 KLOC. A

2/28/91 The Cleanroom Engineering Software Development Process Pa2e 2-5

SET-IR70 Section 2: The Ckeanroom Engineering Process: The Management Basis

total of 179 corrections were required during certification, under 3.5 corrections per KLOC for the new code
with no developer execution. The productivity of the development was 740 LOC per staff month, including
all specification, design, implementation, certification and management, in meeting a very short deadline.

A version of the USAF HH60 (helicopter) flight control program of over 30 KLOC was also
developed using Cleanroom. The HH60 flight control program was developed on schedule. Programmers'
morale went from quite low at the outset ("why us?") to very high on discovering their unexpected capability
in accurate software design without debugging. Effort expended to fix errors went down by a factor of 5.
The twelve programmers involved had all passed the pass/fail course work in mathematical (functional)
verification of the IBM Software Engineering Institute, but were provided a week's review as a team for the
project. The testers had much more to learn about certification by objective statistics [5].

The Coarse/Fine Attitude Determination Subsystems (CFADS) of the Upper Atmospheric Research
Satellite (UARS) Attitude Ground Support System (AGSS) of some 30 KLOC has been developed in Fortran
with partial Cleanroom at NASA. Sixty-two percent of the subroutines, which averaged 258 source lines
each, compiled successfully the first time the testers tried to compile them, and all but one of the rest compiled
successfully on the second attempt. Compared with well measured related systems in the same environment,
the failure rate was down by a factor of 2 while the productivity was up by 70% [6].

V. R. Basili and F. T. Baker introduced Cleanroom ideas in an undergraduate software engineering
course at the University of Maryland, assisted by R. W. Selby. As a result, a controlled experiment in a small
software project was carried out over two academic years, using fifteen teams with both traditional and
Cleanroom methods. The result, even on first exposure to Cleanroom, was positive in the production of
reliable software, compared with traditional methods [24].

Cleanroom projects have been carried out at the University of Tennessee, under the leadership of J.
H. Poore [18] and at the University of Florida under H. D. Mills. At Tennessee, a team has achieved the high
level of performance expected of Cleanroom and additional students continue to be trained in the Cleanroom
concepts. At Florida, seven teams of undergraduates produced uniformly successful systems for a common
structured specification of three increments. It is a surprise for undergraduates to consider software
development as a serious engineering activity using mathematical verification instead of debugging, since
software development is typically introduced primarily as a trial-and-error activity with no real technical
standards.

2.1.4 What is Cleanroom Engineering of Software?

The Cleanroom Engineering process develops software of certified reliability under statistical
quality control in a pipeline of increments, with box structured design and functional verification but
no program debugging permitted before independent statistical usage testing of the increments. It
provides rigorous methods for software specification, development and certification that are capable of
producing low- or zero-defect software of arbitrary size and complexity. Box structured design is based on
a Parnas usage hierarchy of modules. Such modules, also known as data abstractions or objects, are
described by a set of operations that may define and access internally stored data. Functional verification
is based on the fact that any program or program part is a rule for a mathematical function. It may not be
the function desired, but it is a function.

Page 2-6 The Cleanroom Engineering Software Development Process 2/28/91 3

Section. The Cleanroom Engineering Process: The Management Basis SET-4RT0

The term Cleanroom is taken from the hardware industry to mean an emphasis on preventing errors,
rather than allowing errors to appear and removing them later (of course any errors discovered should be
removed). Cleanroom Engineering involves rigorous methods that enable greater control over both product
and process. The Cleanroom process not only produces software of high reliability and high performance,
but does so while yielding high productivity and schedule reliability. The intellectual control provided by
the rigorous Cleanroom process allows both technical and management control.

Cleanroom Engineering achieves statistical quality control over software development by strictly
separating the development process from the testing process in a pipeline of incremental software
development. There are three major engineering activities in the Cleanroom Engineering process [3,7,14]:

First, a Specification team creates an incremental specification that defines a pipeline of software
increments that accumulate into the final software product, which specification includes the statistics of its
use as well as its function and performance requirements;

Second, a Development team designs and codes increments specified using box-structured design
and stepwise refinement with functional verification of each increment, delivers them for certification with
no debugging beforehand, and provides subsequent correction for any failures that may be uncovered during
certification;

Third, a Certification team uses statistical testing and analysis for the certification of the software
reliability to the usage specification, notification to developers of any failures discovered during certification,
and subsequent revalidation as failures are corrected.

As noted, there is an explicit feedback process between certification and development on any failures
found in statistical usage testing. This feedback process provides an objective measure of the reliability of
the software as it matures in the development pipeline. It does, indeed, provide a statistical quality control
process for software development not available in this first human generation of trial and error programming.

2.1.5 Cleanroom Software Engineering Methods

Cleanroom Engineerirn- provides a set of rigorous methods for software development under
statistical quality control, based on sound mathematical and statistical principles. While millions of people
are involved in software, most of them regard software development as an intuitive, heuristic activity. They
do not imagine software engineering as a mathematically based subject with complete rigor being possible.
But software engineering should be and can be a mathematics based activity. When mathematical rigor is
applied both quality and productivity increase. Nor can they imagine software engineering based on statistics
since computers are completely deterministic in behavior. And yet the usage of software is statistical in
nature.

Software is a human generation old, while mathematics is many human generations old. Although
not understood early or widely, software has direct mathematical foundations because of the very
deterministic behavior of computers. A computer program is a rule for a mathematical function, mapping
all possible initial states into final states. Such functions are very complex compared to functions in physical
science and engineering, and traditional mathematical notation is very insufficient. But sufficient
mathematical notation is emerging in computer science and software engineering for dealing with the syntax
and semantics of programs and their functions.

2/2R/91 The Cleanroom Engineering Software Development Process Page 2-7

SET-IR70 Section 2: The Cleanroom Engineering Process: The Management Basis

As an example of deep and useful mathematics, place notation and long division moved arithmetic
from intuition and heuristics to rigorous methods a thousand years ago in the western world. As a result,
school children today can outperform Archimedes and Euclid in arithmetic. Similar movement is possible
in software today.

Statistics is another subject of longer professional development than software. But only a hundred
years ago, statistics was intuitive and heuristic, even though rigorous arithmetic was used in creating sums
and averages. Yet in this time, statistics has become a rigorous, mathematics based subject, often finding
counterintuitive results using statistics in specific topics. The application of statistics makes it possible for
software developers to predict with confidence the quality level of the software when it is fully developed
quite early in the development life cycle.

Cleanroom Engineering not only puts software development under statistical quality control, but
takes debugging out of the list of developer activities, instead using mathematical reasoning before
independent testing and certification. Just as typists looked at the keys when typewriters first came out,
programmers have felt the need to debug programs in this first human generation of programming. But while

counterintuitive at the time, typists went to touch typing with both higher productivity and fewer errors. In
the same way, well educated software engineers can create software with no execution or debugging before
it is tested by independent test and certification engineers, with the product having higher productivity and
much greater quality.

2.1.6 Dealing with Human Fallibility

Humans are fallible, even in using sound mathematical processes in functional verification. Finding
software failures is possible during the certification process. There is a surprising power and synergism
between functional verification and statistical usage testing [14]. First, functional verification can be
scaled up for high productivity and still leave no more errors than heuristic programming often leaves after
unit and system testing combined. Second, it turns out that the mathematical errors left are much easier to
find and fix during testing than errors left behind in debugging, measured at a factor of five in practice [141.
Mathematical errors usually turn out to be simple oversights in the software, whereas errors left behind or
introduced in debugging are usually deeper in logic or wider in system scope than those fixed. As a result,

statistical usage testing not only provides a formal, objective basis for the certification of reliability under

use, but also uncovers the errors of mathematical fallibility with remarkable efficiency.

A major discovery, in Cleanroom Engineering is the ability of well prepared and motivated people
to create nearly defect free software before any execution or debugging, with less than five defects per
thousand lines of code. Such code is ready for usage testing and certification with no unit debugging by the
designers. In this first human generation of software development it has been counterintuitive to expect
software with so few defects at the outset. Traditional heuristic programming practices leave 50 - 60 defects
per thousand lines of code, then the defects are reduced to 15 -18 by testing. Software developers who use
more modern heuristic practices leave only 20 - 40 defects per thousand lines of code which are reduced to
2 - 4 by testing.

The mathematical foundations for Cleanroom Engineering come from the deterministic nature of
computers themselves. As noted, a computer program is no more and no less than a rule for a mathematical
function [8,91. Such a function need not be numerical, of course, and most programs do not define numerical

Page 24 The Cleanroom Engineering Software Development Process 2/28/91 U

Section 2: The Cleanroom Engineering Process: The Management Basis SET-R/70

functions. But for every legal input, a program directs the computer to produce an output, whether correct
as specified or not. And the set of all such input, output pairs is a mathematical function. A more intuitive
way to view a program in this first generation is as a set of instructions for specific executions with specific
input data. While correct, this view misses a point of reusing well known and tested mathematical ideas,
regarding computer programming as new and private art rather than more mature and public engineering.

With these mathematical foundations, software development becomes a process of constructing
rules for functions that meet required specifications, which need not be a trial and error programming
process. The functional semantics of a structured programming language can be expressed in an algebra of
functions with function operations corresponding to program sequence, alternation, and iteration [8]. The
systematic top down development of programs is mirrored in describing function rules in terms of algebraic
operations among simpler functions, and their rules in terms of still simpler functions until the rules of the
programming language are reached. It is a new mental base for most programmers to consider the complete
functions needed, top down, rather than computer executions for specific data.

2.1.7 The Power of Usage Testing over Coverage Testing

The insights and data of Adams [1] in the analysis of software testing, and the differences between
software errors and failures, give entirely new understandings in software testing. Since Adams has
discovered an amazingly wide spectrum in failure rates for software errors, it is no longer sensible to treat
errors as homogeneous objects to find and fix. Finding and fixing errors with high failure rates produces
much more reliable software than finding and fixing random errors, which generally have average or low
failure rates.

The major surprise in Adams' data is the relative power of finding and fixing errors in usage testing
over coverage testing, a factor of 30 in increasing MTrF. That factor of 30 seems incredible until the facts
are worked out from Adams' data. But it explains many anecdotes about experiences in testing. In one such
experience, an operating systems development group used coverage testing systematically in a major
revision and for weeks found mean time to abends in seconds. It reluctantly allowed user tapes in one
weekend, but on fixing those errors, found the mean time to abends jumped literally from seconds to minutes.

The Adams data is given in Table 2.1.7.1 from [1]. It describes distributions of failure rates for errors
in nine major IBM products, including the major operating systems, language compilers, data base systems.
The uniformity of the failure rate distributions among these very different products is truly amazing. But
even more amazing is a spread in failure rates over three orders of magnitude, from 19 months to 5000 years
(60 K months) calendar time in MTIT, with about a third of the errors having a MTTF of 5000 years, and
1% having a MiTF of 19 months.

2V28/91 The Cleanroom Engineering Software Development Process Page 2.9

SET-IR70 Section 2: The Cleanroom Engineering Process: The Management Basis

Table 2.1.7.1 Distributions of Errors (In %) Among Mean Time to Failure (MTTF) Classes

MTTF in K months

60 19 6 1.9 .6 .19 .06 .019

Product
1 34.2 28.8 17.8 10.3 5.0 2.1 1.2 .7
2 34.2 28.0 18.2 9.7 4.5 3.2 1.5 .7
3 33.7 28.5 18.0 8.7 6.5 2.8 1.4 .4
4 34.2 28.5 18.7 11.9 4.4 2.0 .3 .1
5 34.2 28.5 18.4 9.4 4.4 2.9 1.4 .7
6 32.0 28.2 20.1 11.5 5.0 2.1 .8 .3
7 34.0 28.5 18.5 9.9 4.5 2.7 1.4 .6
8 31.9 27.1 18.4 11.1 6.5 2.7 1.4 1.1
9 31.2 27.6 20.4 12.8 5.6 1.9 .5 .0

With such a range in failure rates, it is easy to see that coverage testing will find the very low failure
rate errors a third of the time with practically no effect on the MTTF by the fix, whereas usage testing will
find many more of the high failure rate errors with much greater effect. Table 2.1.7.2 shows the relative
effectiveness of making fixes found by usage testing compared to coverage testing, in terms of increased
MTTF. Table 2.1.7.2 develops the change in failure rates for each MTTF class of Table 2.1.7.1, because it
is the failure rates of the MTIF classes that add up to the failure rate of the product.

Table 2.1.7.2 Error Densities and Failure Densities in the MTTF Classes of Table 2.1.7.1

Property

M 60 19 6 1.9 .6 .19 .06 .019

ED 33.2 28.2 18.7 10.6 5.2 2.5 1.1 .5

ED/M .6 1.5 3.1 5.6 8.7 13.2 18.3 26.3

FD .8 2.0 3.9 7.3 11.1 17.1 23.6 34.2

FD/M 0 0 1 4 18 90 393 1800

Page 2-10 Tke Cleanroom Engineering Software Development Process 2/28/91

Section 2: The Cleanroom Engineering Process: The Management Basis SET-HR7O

First, in Table 2.1.7.2, line 1, denoted M (MTTF), is repeated directly from Table 2.1.7.1, namely
the mean time between failures of the MTIT class. Next, line 2, denoted ED (Error Density), is the average
of the error densities of the 9 products of Table 2.1.7.1, column by column, which represents a typical
software product. Line 3, denoted ED/M, is the contribution of each class, on the average, in reducing the
failure rate by fixing the next error found by coverage testing (1/M is the failure rate of the class, ED the
probability a member of this class will be found next in coverage testing, so their product, ED/M, is the
expected reduction in the total failure rate from that class). Now ED/M is also proportional to the usage
failure rate in each class, since failures of that rate will be distributed by just that amount. Therefore, this
line 3 is normalized to add to 100% in line 4, denoted FD (Failure Density). It is interesting to note that Error
Density (ED) and Failure Density (FD) are almost reverse distributions, Error Density about a third at the
high end of MTTF's and Failure Density about a third at the low end of MTTF's. Finally, line 5, denoted
FD/M, is the contribution of each class, on the average, in reducing the failure rate by fixing the next error
found by usage testing.

The sums of the two lines ED/M and FD/M turn out to be proportional to the decrease in failure rate
from the respective fixes of errors found by coverage testing and usage testing, respectively. Their sums are
77.3 and 2306, with a ratio of about 30 between them. That is the basis for the statement of their relative worth
in increasing MTI'F. It seems incredible at first glance, but that is the number!

To see that in more detail, consider, first, the relative decreases in failure rate R in the two cases:

Fix next error from coverage testing

R --* R - (sum of ED/M values)/(errors remaining)
= R - 77.3/E

Fix next error from usage testing
R -- R - (sum of FD/M values)/(errors remaining)

= R - 2306/E

Next, the increase in MTTF in each case will be

1/(R - 77.3/E) - 1/R = 77.3/(R*(E*R - 77.3))
and

1/(R - 2306/E) - 1/R = 2306/(R*(E*R - 2306))

In these expressions, the numerator values 77.3 and 2306 dominate, and the denominators are nearly equal
when E*R is much larger than 77.3 or 2306 (either 77.3/(E'R) or 2306/(E*R) is the fraction of R reduced
by the next fix and is supposed to be small in this analysis). As noted above, the ratio of these numerators
is about 30 to 1, in favor of the fix with usage testing.

2.2 Mathematical Basis of Software Design

2.2.1 Box Structured Software System Design

Box structured design is based on a Parnas usage hierarchy of modules [21, 221. Such modules, also
known as data abstractions or objects, are described by a set of operations that may define and access

2!28/91 The Cleanroom Enqineering Software Development Process Pane 2-11

SET-IR70 Section 2: The Cleanroom Engineering Process: The Management Basis

internally stored data. In Ada, such modules are defined as packages, with operations defined by the calls
of the procedures and functions of the packages, and internal data declared in the package.

Stacks, queues, and sequential or random access files provide simple examples of such modules or
packages. Part of their discipline is that internally stored data cannot be accessed or altered in any way except
through the explicit operations of the package. It is critical in box structured design to recognize that
packages exist at every level from complete systems to individual program variables. It is also critical to
recognize that a verifiable design must deal with a usage hierarchy rather than a parts hierarchy in its
structure. A program that stores no data between invocations can be described in terms of a parts hierarchy
of its smaller and smaller parts, because any use depends only on data supplied it on its call with no
dependence on previous calls. But a specific realization of a package, say a queue, will depend not only on
the present call and data supplied it, but also on previous calls and data supplied then.

The parts hierarchy of a structured program identifies every sequence, alternation, and iteration (say
every begin-end, if-then-else, while-loop) at every level. It turns out that the usage hierarchy of a system
of packages (say an object oriented design with all objects identified) also identifies every call (use) of every
operation of every package. The semantics of the structured program are defined by a mathematical function
for each sequence, alternation, and iteration in the parts hierarchy. That doesn't quite work for the operations
of packages because of usage history dependencies. But there is a simple extension for packages that does
work. It is to model the behavior of a package as a state machine, with its calls of its several operations as
inputs to the common state machine. Then the semantics of such a package is defined by the transition function
of its state machine (with an initial state). When the operations are defined by structured programs, the
semantics of packages becomes a simple extension of the semantics of structured programs.

While theoretically straightforward, the practical design of systems of Parnas modules [22, 23]
(object oriented systems) in usage hierarchies can seem quite complex on first exposure. It seems much
simpler to outline such designs in parts hierarchies and structures, for example in data flow diagrams, without
distinguishing between separate usages of the same module. While that may seem simpler at the moment,
such design outlines are incomplete and often lead to faulty completions at the detailed programming levels.
In spite of their common use in this first human generation of system design, data flow diagrams should only
be used within rigorous design methods rather than leaving critical requirements to details with incomplete
specifications.

In order to create and control such designs based on usage hierarchies in more practical ways, their
box structures provide standard, finer grained subdescriptions for any package of three forms, namely as
black boxes, as state boxes, and as clear boxes, defined as follows [12, 16, 171.

Black Box: External view of a function, describing its behavior as a mathematical function from
historical sequences of stimuli to its next response.

State Box: Intermediate view of a function, describing its behavior by use of an internal state and
internal black box with a mathematical function from historical sequences of stimuli and states to its
next response and state, and an initial internal state.

Clear Box: Internal view of a function, describing the internal black box of its state box in a usage
control structure of otherParnas packages; such a control structure may define sequential, alternative,
iterative or concurrent use of the other packages.

Page 2-12 The Cleanroom Engineering Software Development Process 2/28/91 U

Secdon 2: The Ckanroom Engineering Process: The Management Basis SET.IR70

Box structures enforce completeness and precision in design of software systems as usage hierarchies

of Parnas packages. Such completeness and precision lead to pleasant surprises in human capabilities in
software engineering and development. The surprises are in capabilities to move from system specifications
to design in programs without the need for unit/package testing and debugging before delivery to system
usage testing. The division of concerns into three views of the system allows the developers to keep
intellectual control over the subsystem to be developed. In this first generation of software development,
it has been widely assumed that trial and error programming, unit testing and debugging were necessary. But
well educated, well motivated software professionals are, indeed, capable of developing software systems
of arbitrary size and complexity without program debugging before system usage testing [7].

2.2.2 Stepwise Refinement and Functional Verification

Once the design is complete, the clear box at each level is expanded to code to fully implement the
defined function rule for the black box function at that level by stepwise refinement, as introduced by Wirth
[25]. Following each expansion, functional verification is used to help structure a proof that the expansion
correctly implements the specification. The nature of the proof revolves around the fact that a program is
a rule for a function and the specification for the program is a relatiori or function. What must be shown in
the proof is that the rule (the program) correctly implements the function (the specification) for the full range
of the specification and no more. Linger, Mills and Witt [8] have developed a correctness theorem which
defines what must be shown to prove that aprogram is equivalent to its specification for each of the structured
programming language constructs. The proof strategy is subdivided into small parts which easily
accumulate into a proof for a large program. Experience indicates that people are able to master these ideas
and construct proof arguments for very large software systems.

The Development team expands each clear box in the usage hierarchy into the selected target code
using stepwise refinement and functional verification. As the Development team designs and implements
the software, it is held collectively responsible for the quality of the software.

In describing the activities of software development, no mention is made of testing or even of
compilation. The Cleanroom Development team does not test or even compile. They use mathematical
proofs (functional verification) to demonstrate the correctness of programming units. Testing and measuring
failures by program execution is the responsibility of the Certification team.

2.2.3 The Mathematical Basis for Functional Verification

Any program or program part is a rule for a mathematical function. It may not be the function
desired, but it is a function. In structured programs, the rules are direct in form, building program rules out
ofjust two function building operations: first, function composition which corresponds to sequential execution
of program parts, and second, disjoint function union which corresponds to alternative execution of one
program part or another, as in if or case structures. Program iteration uses no more than these two operations
together, and function recursion provides a useful view of an iteration process.

As noted, any program part or total program defines a single, possibly complex function. The
function is seldom a numerical function in classical terms. Even numerical programs must deal with finite
sets of numbers in which overflow and roundoffs depart from classical number systems. Given the text or
name of a program or program part in whatever language, say a program in Ada

2128/91 The Cleanroom Engineering Software Development Process Page 2.13

SET-IR70 Section 2: The Cleanreom Engineering Process: The Management Badsi

Alpha = procedure Beta
is

begin

end Beta;

the program function will be denoted by brackets []around the name or text, as

[Alpha] = [procedure Beta
is

begin

end Beta]

In this case [Alpha] is a set of ordered pairs.

[Alpha] = (<X, Y>I Given initial state X, Alpha will produce final state Y)

The function [Alpha] is determined by Ada text, but is independent of the language Ada. The same function
can be defined in Fortran text, COBOL text, etc.

2.2.4 Functional Verification of Program Parts

From programs to program parts, starting with simple assignment statements, such as

x := y;

in Ada, the program part function

[x := y;]

takes its initial data state to its final data state. If legal, it will change the value of x in the final state to the
value of y in the initial state and change no other values of variables in the initial state. If illegal, the final
state may be quite different than the initial state, possibly with both x and y disappearing, as well as other
variables, in terminating the entire program execution. So assignment statements have simple function parts
when legal, but possible more complex function parts when illegal. In summary, the function [x := y;] is a
set of ordered pairs with second members determined uniquely by the first members

[x := y;] = (<<x, y, ...>, <y, y, ...>>A x := y; is legal)
u { <<x, y, ...>, <???>;I x := y; is illegal)

where M?? will be determined by other aspects of the initial state. Illegal situations will be suppressed in what
follows for sake of brevity. In more direct function notation, dealing only with the legal situation,

Page 2-14 The Cleanroom Engineering Software Development Process 2/21/91

$#SectIon 2: Tke Cleanroom Engineering Process: Tke Management Basis SET-1R70

[x := y;](<x, y ... >= <y, y,..

in which the function argument <x, y, ...> produces the function value <y, y,...>.

Next, for a sequence of statements, such as

x := y; y:= z; z:= x;

in Ada, the part function

[x:= y; y:= z; z:- x;]

will alter values of x, y, z as a composition of the three individual assignment functions

[x := y;]*[y := z;]*[z := x;].

That is, beginning with an initial state as argument, the first assignment function gives a new state as value

[X := y;](<x, y, Z'>) = <Y, y. z, ...>,

the second assignment function uses this value as an argument

[y := z;](<y, y, z, ...>) = <y, Z., z...>,

and the third assignment function uses this last value as argument

[z := x;](<y, ,z, ...) <y, z, Y,>.

That is, the composition function is a nested set of simpler functions that evaluate as

([x := y;] 0[y := z;]*[z := x;])(<x, y, z, ...>)
= z :=x;]([y :=z;]([x :=y;](<x, y, z,...>)))
= [z :=x;]([y := z](<y, y, z,...>))
= [z := x;](<y, z, z, .>
=f <y, Z, y, ...>

as worked out just above. In summary, this composition function will interchange the values of y and z and
leave x with the initial value of y, not changing any other data in the initial state.

Finally, for an alternation statement, such as

if x > y then y: z else x :z end if;

in Ada, the part function will execute either the then part or else part, so that

2/28/91 The Cleanroom Engineering Software Development Process Page 2.15

SET-IR70 Section 2: The Cleanroom Engineering Process: The Management Basis

[if x > y then y := z; else x := z; end if;]
= (x > y [y :=z;] I x <= y -ý [x := z;])

= [y:= z;I x > y] U [x:= z;I x <= y]

where the expression [y := z;I x > y] means the function [y := z;] with its domain restricted to the condition
x > y. That is, the part function is a union of disjoint functions.

2.3 Software Engineering Under Statistical Quality Control

The statistical foundations for Cleanroom Engineering come from adding usage statistics to software
specifications, along with function and performance requirements [3, 5, 14]. Such usage statistics provide
a basis for measuring the reliability of the software during its development, and thereby measuring the quality
of the design in meeting functional and performance requirements. A more usual way to view development
in this first generation is as a difficult-to-predict art form.

2.3.1 Statistical Certification

Cleanroom statistical certification of software involves, first, the specification of usage statistics
in addition to function and performance specifications. Such usage statistics provide a basis for assessing
the reliability of the software being tested under expected use. An efficient estimation process has been
developed for projecting Mean Time to Failure (MTTF) of software under test while also under correction ,
for previously discovered failures [5].

As each specified increment is completed by the designers, it is delivered to the certifiers, who
combine it with preceding increments, for testing based on usage statistics. As noted, the Cleanroom
construction pla,. must define a sequence of nested increments which are to be executed exclusively by user
commands as they accumulate into the entire system required. Each subsequence represents a subsystem
complete in itself, even though not all the user function may be provided in it. For each subsystem, a certified
reliability is defined from the usage testing and failures discovered, if any.

It is characteristic that each increment goes through a maturation process during the testing,
becoming more reliable from corrections required for failures found, serving thereby as a sfable base as later
increments are delivered and integrated to the developing system. For example, the HH60 flight control
program had three increments [5] of over 10 KLOC each. Increment 1 code required 27 corrections for
failures discovered in its first appearance in increment I testing, but then only 1 correction during increment
1/2 testing, and 2 corrections during increment 114/3 testing. Code in increment 2 required 20 corrections
during its first appearance in increment 1/2 testing, and only 5 corrections during increment 1/2/3 testing.
Increment 3 code required 21 corrections on its first appearance in increment 1/2/3 testing. In this case, 76
corrections were required in a system of over 30 KLOC, under 2.5 corrections per KLOC for verified and
inspected code, with no previous execution or debugging.

In the certification process, it is not only important to observe failures in execution, but also the times
between such failures in execution of usage representative statistically generated inputs. Such test data must
be developed to represent the sequential usage of the software by users, which, of course, will account for
previous outputs seen by the users and what needs the users will have in various circumstances. The state
of mind of a user and the current need can be represented by a stochastic process determined by a state

Page 2-16 The Cleanroom Engineering Software Development Proces 2s.Th/91 U

Section 2: The Ceaxroom Engimering Prtcess: Th* Management Basis SET-RT70

machine whose present state is defined by previous inputs/outputs and a statistical model that provides the
next input based on that present state [14].

2.3.2 Certification Tasks

In parallel with the Cleanroom Development team, the Cleanroom Certification team prepares to
certify the software up to and including the increment being developed by the Development team. The
Certification team uses the usage profile and the portion of the specification that is applicable to the
increments to be verified to prepare test cases including expected outputs to tests.

When the Development team has completed an increment, the Certification team creates one or more
successive versions of the accumulated system up through this increment. For each version the Certification
team compiles the increment, combines it with previous increments, and certifies the accumulated system
through this version. If failures are encountered in the certification of a version, they are returned to the
Development team for analysis and engineering changes to whatever increments are causing the failures.
While failures are likely to be caused by the latest increment added, previous increments may be at fault and
changed as well, as noted in HH60 experience. Each redelivery of changedincrements defines a new version.
If no failures are encountered in the certification of a version, no additional versions are required.

For each version of the accumulating system, tests are constructed at random in accordance with the
specified usage statistics profile and then exercised. Test results are compared to the expected output and
either a failure occurred or the result was correct. The execution time between successive failures is a sample
of the MTTF for that version. All such samples of the MITF for the version are used to estimate the MITF
for the future, corrected version of the software.

2.3.3 The Certification Model

The estimate for the MTTF of a version is based on a certification model which describes the MITF
as an algebraic expression based on the initial MTTF, say M'flF 0 , at the start of certification, the number
of independent failures that have been addressed by engineering changes, say EC, and the average MTFF
rate of improvement per failure addressed, say ROL The certification model is

MTTF = M F0 (ROI c)

where MTTF0 and ROI are to be estimated from the samples of MTTF and the known values of EC for each
sample. The value of EC is known for each failure sample in a given version, namely the number of
engineering changes preceding the construction of the version in which the failure occurred.

When common software development methods and skills are used across increments, the certification
model can be used across versions with growing increments. With significant reuse of software modules and
independent estimates of their MTTF, specific statistical analysis should be employed. What follows
assumes common methods and skills in the software development. For certain systems, other measurements
than MTIF may be desired. For example, the reliability of systems with independent start ups for specific
missions may be better estimated on the basis of fraction of total missions that are failure free. Such statistics
can be developed for what is needed.

2V28/91 The Cleanroom Engineering Software Development Process Page 2-17

SET-IR70 Section 2: The Cleanroom Engineering Process: The Management Basis

This certification model has been used in real projects with statistical testing to obtain reasonable
results. Of course there is no logical or exact way to verify any such model. But statistical reasoning provides
a basis of confidence for using the certification model. There is a paradox in statistical testing. If software
has a large number of failures, the statistics can become more precise; if software failures are rare, or never
occur, the statistics are very imprecise. The paradox is that the best software has the least precise statistics.
The response to this paradox is that the continued usage of the software is sampling itself and adds to the
precision of the statistics. If software is entirely failure free, that fact cannot be established by statistical
testing. Failure-free usage of the software becomes part of the statistics.

Since no failures detected gives no absolute proof that failures may never occur later, the MTTF must
still be estimated as finite. In this case, the MTTF will be estimated at double the elapsed time with no failures
detected. If failures do appear infrequently, the variability of times between failures will be very great; in
fact the statistical standard deviation of times between failures will be the same as the mean time between
failures. So estimates of MTTF are subject to considerable variability from the actual MTTF. At first this
may sound as if the statistics are not very useful. In fact, the statistics are useful in entirely new ways,
especially when compared with the lack of statistics. There are many counterintuitive facts emerging about
statistical testing. For example, as shown previously, fixing a failure from random usage testing will improve
the time to next failure 30 times as much as fixing a failure from random coverage testing.

2.3.4 The Certification Process

The certification of software is based on a statistical estimation process for the MITF of a version
based on the certification model above which describes the M'ITF as an expression

MTTF = MTIF0 (ROI EC)

where MTTF 0 and ROI are to be estimated from the samples of MTITF and the value of EC for each sample.

As developed in (6], three major alternatives have been considered for the estimation process, namely
1) a maximum likelihood estimator, 2) a least squares estimator, and 3) a logarithmic least squares estimator.
The third alternative for estimation has turned out the most powerful, namely to redescribe the relation above
in logarithmic form

In MTITF = In MTTF0 + EC (In ROI)

which is linear in the two variables In MTTF 0 and In ROI.

During the certification process for a version, the dynamics of change indicates how much more test
time will be required to certify the software to a required MTrF. The term ROI is the factor by which
addressing the next failure will increase the current MTI'F. This provides an estimate on how many failures
must be addressed to reach a required MTrF, and how much time will be required to find such failures. If,
conceivably, ROI goes below one that means the new version of the system is worse than the previous version
and serious management concern is needed. It is expected and desirable that the value of ROL is constant
so MTTF increases monotonically. The value of ROI decreases when frequent failures are encountered late.
Failures found early are not expensive in terms of eventually obtaining a high value for MTTF with a
reasonable testing budget, but if ROI drops late in the certification process it can take a large number of
additional tests to achieve a desired MTTF.

Page 2-19 The Cleanroom Engineering Software Development Process 2/28/91

Secton 2: The Cleanroom Engineering Process: The Management Basis SET-IRT0

Once the MTTF for a version has been estimated a decision about the next action must be taken. The
following actions are possible:

(1) address the observed failures and continue to certify the software,

(2) stop certification because the software has reached the desired reliability for this stage of testing,
or

(3) stop certification and redesign the software because the failure rate is too high or the failures are
too serious.

The process described above continues until all the increments are complete. When all the
increments are complete and tested, the software can be deployed. Following deployment the operations and
maintenance phases for the software are entered. These phases are not discussed further here except to
observe that 1) operations provide actual testing for continued estimates of the MTTF to check against what
has been certified during development, and 2) the maintenance phase will be much simpler for Cleanroom
developed software than for heuristically developed software due to higher quality of the software and the
design and development trail.

2.4 Human Issues of Cleanroom Engineering

In the previous sections many of the ideas that have led to the definition of the processes and practices
that form the basis of Cleanroom Engineering have been introduced. In this section the integrated suite of
Cleanroom Engineering processes and the associated rigorous engineering practices that facilitate the
specification, development and certification of high-quality software are summarized.

2.4.1 Cleanroom Teams

As noted above, Cleanroom projects are performed by three teams based on a separation of concerns.
In more detail the three teams are:

Specification Team

The Specification team prepares, enhances and maintains the working specifications. The
Specification team is responsible for verifying that if the software is implemented in accordance
with the specification that the software will perform its mission in accordance with expectations.
That means the software will provide complete user satisfaction in terms of providing the target
return on investment and will satisfy the usability criteria established for direct users, while
performing its intended mission.

Development Team

The Development team designs and implements the software increment by increment in accordance
with the specification and verifies that each increment satisfies the proportion of the specification
assigned to that increment. The Development team uses: (a) Box Structures to design the increment
and (b) Stepwise refinement and functional verification to implement and perform unit verification
on the increment.

2/28/91 The Cleanroom Engineering Software Development Process Page 2-19

SET-IR70 Section 2: The Cleanroom Engineering Process: The Management Basis

The Development team is responsible for the quality of the increment. There is no individual
responsibility for development errors since the entire team participates in proof conversations so
every team member has the opportunity and duty to detect and eliminate design errors.

Certification Team

The Certification team certifies that the accumulating increments satisfy the specification by
performing independent usage testing with tests they have developed in accordance with the
expected usage profile. The Certification team uses statistical quality control techniques to certify
the software by

Preparing test scenarios and expected results
Determining the sampling plan
Performing configuration management on the accumulating software
Conducting tests on accumulating increments
Transferring failures to the Development team for resolution
Recording failure data
Estimating the reliability of each increment

These three engineering teams are responsible to an engineering manager who is responsible for
leading software specification, development and certification efforts. In addition to leading, the engineering
manager plans and controls the activities of the teams.

2.4.2 Developing The Specification

A Cleanroom software development project is organized as depicted in Figure 2.4.2.1. The project
begins with the development of a specification and continues until the full software system has been certified
as meeting its specifications. A Cleanroom Engineering project begins when a decision is made to develop
some software and ends when a decision is made to accept the software for deployment. It is quite hard to
characterize what is known about the software when a Cleanroom project is initiated. In some cases a great
deal is known and in other cases much less is known. In any event what is known must be assembled and
the software project team must prepare and publish a specification for the software.

A Cleanroom specification is prepared in six volumes as follows:

Mission Volume
Defines the mission the software is to perform.

User's Reference Manual Volume
Defines the "look and feel" of the software from the user's perspective by defining the stimuli
and responses the software consumes and produces.

Functional (Black Box) Specification Volume
Defines the black box responses produced by the software as a function of stimuli histories.

Page 2.20 The Cleanroom Engineering Software Development Process 2/28/91 9

Secton 2: The Cleanrooms Engineering Process: The Managewnit Basis SLET1.70

Figure 2.4.2.1 Typical Organization of a Cleanroom Project

SOFTWARE
SPECIFICATION

CONSTRUCTION

F PLANNING

INCREMENT 2 1__&_2

S DESIGN & BUILD JTEST PREPARATION

INCREMENT 3 INCREMENT 1, 2,3
CERTIFY

INCREMENT 1 - n

Functional Specification Verification Volume
Presents the justification as to why the Functional (Black Box) Specification is correct as
written.

Expected Usage Profile Volume
Defines the statistical usage profile in each program state i for the software features including
the probability p, that given the software is in program state i it will receive the stimuli
necessary for the software to transfer to program state j.

Construction Plan Volume
Defines the sequence in which the software is to be constructed, in terms of increments.

Specification volumes are developed in a spiral fashion since adding knowledge to one volume
typically influences another volume, and each volume becomes successively more complete. Specification
development continues until it is determined the specifications both represent what is wanted and that they
are sufficient to precede. In a Cleanroom project the effort to produce the specification typically consumes
40 - 60% of the total project effort. A specification is always formal even if it is preliminary.

2/28/91 The Cleanroom Engineering Software Development Process Page 2-21

SET-IR70 Secdon 2: The Cleanroom Engineering Process: The Management Basis

In parallel with developing the specifications it is necessary to engage in activities in order to
understand the problem domain and to understand the solution domain. It is necessary to understand the
problem domain to invent the stimuli and responses that maximize the effectiveness of the software when
it becomes operational in the problem domain. It is necessary to explore the solution domain ahead of the
design to determine the best route to developing the software to again maximize its effectiveness in the
solution domain.

2.4.3 Developing a Construction Plan

Once the first four volumes of the specifications are accepted a plan for how to construct the software
is prepared. The construction plan decomposes the entire software into increments. The individual
increments accumulate into the entire software system. With Cleanroom Engineering, Increment 1 must be
executable by user commands, Increment 1 plus Increment 2 must be executable by user commands and so
on. It is traditional to develop software in increments but the requirement for user command executability
of accumulating increments is a major difference. The fact that the accumulating increments are executable
by user commands means that as increments are accumulated into the full system and the accumulating
increments have user profiles and therefore, can be certified with usage testing. Figure 2.4.3.1 indicates the
difference in construction strategy. The left side depicts a traditional top-down construction schedule where
increments are defined as cross sections in the hierarchy. The right side depicts a construction plan that
develops usage executable accumulating increments where the increments represent vertical slices of the
usage hierarchy so user stimuli are transformed into user responses. Figure 2.4.3.2 shows the portion of the
usage hierarchy that the accumulating system will represent fora 4-increment software project. Developing
a software construction plan for user executable accumulating increments typically requires hard thinking.

Figure 2.4.3.1 Difference Between Conventional and Cleanroom Incremental Construction Strategies

Increment 1

Increment 2

Increment 3 s

/U

Increment 4

Conventional Top-down Cleanroom User Executable
Incremental Construction Plan Incremental Construction Plan

Page 2-22 The Cleanroom Engineering Software Development Process 2128/91 U

Section 2: The Cleaxreem Engineering Precen:- The Manaement Bads, SET-R70

Figure 2.4.3.2 Cleanroomn Incremnental Testing Strategy Illustrated

First User Executable Incorrect Second User Executable Incorrect

Third User Executable Incorrect Fourth User Executable Incorrect

A sample construction plan is shown in Figure 2.4.3.3.

2.4.4 Developing And Certifying The Software

Following the adoption of a construction plan, the software is developed and certified by increment.
The Development team -levelops Increment 1. In parallel the Certification team prepares test scenarios for
Increment 1. When the Development team completes its verification of Increment 1 using functional

2/28/91 The Cleanreeni Engineering Software Development Process Page 2-23

SET-IR70 Section 2: The Clkanroom Engineering Process: The Management Basis

Figure 2.4.3.3 Typical Cleanroom Construction Plan

INCREMENT 2 3
DEVELOPMENT 1j 2 _______

PREPARE TEST 1 1 &2 1&2&3
SCENARIOS _ _ _ _ _ _

CERTIFY --

STATISTICALZ] P J)
USAGE TESTING

verification and other logical arguments the Development team turns the increment over to the Certification
team for certification. The Development team does no compilation or execution testing of the increment.
For Increment 2, the Development team develops, while the Certification team prepares test scenarios for
Increment 2 and certifies Increment 1. This process continues for subsequent increments.

Once the Development team completes and submits the increment, the Certification team then
compiles the increment. If any compilation failures are encountered the Certification team completes a
failure report and returns the software to the Development team for correction. The increment is then
corrected and returned to the Certification team which again compiles the increment. Assuming no
compilation errors are found the Certification team assembles the system and begins certification testing by
selecting a test case at random that was randomly generated and running it. All responses from each test case
are examined for failures. Tune to failure is recorded. The Certification team continues testing until the
reliability targets are reached, or the volume of failures indicates that re-design is necessary. The
Certification team enters the test results in the certification model data base and estimates the reliability of
the software.

The Certification team then returns the failure reports to the Development team who then correct the
failures. For each correction the Development team completes an Engineering Change Notice. When the
Development team is satisfied that the increment contains no more failures the increment is once again
returned to the Certification team. The Certification team resumes testing. Tests previously run are re-run
to determine if previously observed failures have been fixed. These tests that are re-run are not used in the
certification model, just new test scenarios.

Page 2-24 The Cleanroom Engineering Software Development Process 2/28/91 3

Section 2: The Cleanroom Engineering Process: The Management Basis SET-R7O

The certification process continues until either the increment is certified to the desired level or it is
determined the increment is so failure-laden that continued certification is unproductive and the best course
is to scrap the increment and develop a new increment. Typically in the Cleanroom environment, failures
are encountered very early in the test scenario as the simple errors that the logical verification process leave
in the software are uncovered. Very soon the few simple errors the Development team left in the software
are found and test cases begin long runs before failures are encountered. It is typical that only a few cycles
of corrections are required before an increment can be certified to the desired level of reliability.

2.4.5 Human Factors

Previous sections have emphasized the technology. The human factors of Cleanroom Engineering
arejust as important. The goal of the Cleanroom technologies is to provide software developers with the tools
and practices they require for the job they are being asked to do. Software developers want to do a good job.
They know the users of their products do not like to experience failures. They know their organizations
would like it much better if their software was not failure-laden. They know their managers are asking them
to produce quality software. They also know that their managers are not giving them the resources that permit
them to deliver on their own desires or on management's desire to prcduce high-quality software. This is
a recipe for low morale and discontent.

The first thing that Cleanroom does for software developers is that it provides them the means to
deliver quality. This is a sure path to higher morale and increased job satisfaction. In recent years software
developers are being referred to as "software engineers." In fact it is widely suspected that software
developers are engineers in name only when they are using contemporary software development practices.
So the second thing Cleanroom does for software developers is that it provides them with the means to
become software engineers both in deed and name.

Other aspects of the human side of Cleanroom Engineering include:

Emphasis on eliminating rework - get it right the first time so it is not necessary to track and
correct an error on previously completed work.

Emphasis on team effort - the team is responsible for quality.

Assignment of responsibilities to teams based upon division of concerns.

Emphasis on giving people the rigorous practices they require to specify, develop and certify
software.

Emphasis on thinking, justifying and verifying prior to doing.

Emphasis on specifying before implementing; that is, do not start coding early under the
assumption that there will be a lot of debugging to do.

2/2R/91 The Cleanroom Engineering Software Development Process Page 2-25

SET-IR70 Section 2: The Cleanroom Engineering Process: The Management Basis

2.5 References

[1] Adams, E. N., "Optimizing preventive service of software products," IBM Journal of Research and
Development, January 1984.

[21 Basili, Victor R., "Software Development: A Paradigm for the Future," UMIACS-TR-89-57, College
Park MD, University of Maryland, June 1989.

[3] Cho, C., Quality Programming: Developing and Testing Software with Statistical Quality Control, John
Wiley and Sons, New York, 1987.

[4] Cobb, R. H. and H. D. Mills, "Engineering software under statistical quality control," I,
November 1990.

[51 Currit, P. A., M. Dyer and H. D. Mills, "Certifying the reliability of software," IEEE Transactions on
Software Engineering, Vol. SE- 12, No. 1, January 1986, pp 3-11.

[6] Green, S.E., A. Kouchakdjian, and V. R. Basili, "The Cleanroom case study in the software engineering
laboratory: project description and early analysis," Software Engineering Laboratory, SEL-90-002, March
1990.

[7] Linger, R. C. and H. D. Mills, "A case study in Cleanroom software engineering: The IBM COBOL
structuring facility," Proceedings of COMPSAC '88 IEEE, 1988.

[8] Linger, R. C., H. D. Mills and B. I. Witt, Structured Programming: Theory and Practice, Addison Wesley,
1979.

[91 Mills, H. D., "The new math of computer programming," Communications of the ACM, Vol. 18, No.
1, 1975.

[10] Mills, H. D., Software Productivity, Little, Brown and Company, 1983.

[111 Mills, H. D., "Structured programming: Retrospect and prospect," EjSow , November 1986,
pp 58-66.

[12] Mills, H. D., "Stepwise refinement and verification in box-structured systems," IEEE CmpuLCt, June
1988, pp 23-36.

[13] Mills, H. D., V. R. Basili, J. D. Gannon and R. G. Hamlet, PrincipleP of Comutr progmamming: A
Mathematical Approach, Wm. C. Brown, 1987.

[14] Mills, H. D., M. Dyer and R. C. Linger, "Cleanroom software engineering,"I Softwar, September
1987, pp 19-24.

[151 Mills, H. D. and R. C. Linger, "Data structured programming: Program design without arrays and
pointers," IEEE Transactions on Software Engineering, Vol. SE-12, No. 2, February 1986, pp 192-197.

Page 2-26 The Cleanroom Engineering Software Development Process 2/28/91 9

Section 2: The Cieanroom Engineering Process: The Management Basis SET-IR70

[16] Mills, H. D., R. C. Linger and A. R. Hevner, Principles of Information Systems Analysis and Design
Academic Press, 1986.

[17] Mills, H. D., R. C. LingerandA. R. Hevner, "Box structured information systems,"IBM Systems Journal,
Vol. 26, No. 4, 1987, pp 395-413.

[18] Mills, H. D. and J. H. Poore, "Bringing software under statistical quality control," Oualily Progs,
November 1988, pp 52-55.

[19] Musa, J. D., A. lannino, K. Okumoto, Software Reliabilit: Measurement- Predication- Application
McGraw-Hill, New York, 1987.

[20] Musa, J. D., W. E. Everett, "Software-ReliabilityEngineering: Technology forthe 1990s,"IEEEjSfta,
November 1990.

[21] Parnas, D. L., "A technique for software module specification with examples", Comunications of the
ACM Vol. 15, No. 5, May 1972, pp 330-336.

[22] Parnas, D. L.,"Designing software for ease of extension and conaraction,"IEEE Transactions on Software
,E,,nlgineeg, SE-5, No 3, March 1979, pp 128-138.

[23] Parnas, D. L. and Y. Wang, "The Trace assertion method of module-interface specification", Tech. Rep.
89-261, Queen's University, TRIO, October 1989.

[24] Selby, R. W., V. R. Basili and F. T. Baker, "Cleanroom software development: An empirical
evaluation," IEEE Transactions on Software Engineerin , Vol. SE-13, No. 9, September 1987.

[25] V, irth, N., "Program development by stepwise refinement", Communications of the ACM Vol. 14, No.
4, April 1971, pp 221-227.

2/28/91 The Cleanroom Engineering Software Development Process Page 2-27

SET-IR70 Section 2: The Cleanroom Engineering Process: The Management Basis

Page 2-28 The Cleanroom Engineering Software Development Process 2/28/91

SET-IR70

Section 3
A Box Structures Model for Cleanroom Engineering

In this section, the processes used to develop software in a Cleanroomn Engineering environment are
specified using Box Structures. It assumes an understanding of the general Cleanroom Engineering ideas
and practices and of the Box Structures approach to modeling a process.

3.1 Process Models

Process models are briefly introduced before developing the Cleanroom Engineering process model.
A process is a set of progressive steps which transform stimuli into responses. A software development
process is then the set of steps that people use to prepare software to satisfy a defined need. There is a wide
divergence between organizations in how well the process they use to develop software is defined and if a
process is defined how well it is followed.

Software development is a complex process. Complex processes are documented by developing an
abstraction of the process called a model. Models need to be simple enough that people are able to use the
model to reason about real world occurrences while at the same time sufficiently realistic so the reasoning
produces sound extrapolations to the real world.

Researchers who have been modeling the software development process have been finding itdifficult
to develop a model that reaches the right combination of simplicity and realism. The reason is that it is very
difficult to develop a simple but yet realistic model of a process when that process is not under the complete
intellectual control of those people who are performing the process. It is not surprising that software
development is not in a state of intellectual control since society has been developing software for less than
a human generation. Software development is still largely a heuristic process where software developers
make large inventions with little verification of each invention.

Cleanroom Engineering practices permit engineers to develop and verify software using procedures
which a have a sound mathematical basis. The procedures establish intellectual control by giving engineers
the ability to make an orderly sequence of small inventions following each invention with a verification that
enables the engineer to quickly find faults in their reasoning. The result is that it is has been possible to
develop a useful model of the software development process.

3.1.1 Box Structures of Processes

Processes exist in real time since stimuli arrive and responses are produced in real time. Due to the
complex nature of the process it is useful to consider three different descriptions of a process.

There is the black box description which is a function which maps the histories of the stimuli which
impact the proces., into responses. Black box descriptions are implementation free. They define the inputs
to and the products of the process.

Processes typically store data between stimuli in order to respond to the effect of prior stimuli. A state
box description is a function which maps current stimuli and current state data (data known at this level with
the effects of hidden data defined in lower parts) into a response and new state.

2/28191 The Cleanroom Engineering Software Development Process Page 3-1

SET-IR70 Sectios 3: A Box Structures Model for Cleanroom Engineering

Processes typically use lower level processes to perform an allocated process. A clear box
description expands the state box description in terms of black boxes or processes to use at the next lower
level in the hierarchy. Process decomposition continues until the process is fully defined without the need
to any new process in any clear box. Experience with structured programming leads us the definition of four
types of clear boxes: sequence, alternation, iteration and concurrent.

Experience indicates that people are able to develop much better models of complex processes like
software development when they examine the process from three perspectives (Black Box, State Box and
Clear Box). A common difficulty with models (including many of the process models that have been
developed) is that the functions defining the model are a combination of the three functions.

Processes are often quite complex. As a result a process is typically decomposed into child processes
and the child processes are further decomposed into more child processes. The using relationship between
processes is often represented in a usage hierarchy that defines which child processes are used by each parent
process.

In the process model as developed a hierarchy of processes are considered where the parent process
is "'develop software". The parent process is subdivided into processes. The division continues until all the
leaf nodes require no further decomposition.

3.1.2 Components Of A Software Development Process Model

A process model to be complete must define the following:

what-to-do the sequences in which processes must be developed

how-to-do-it the way to perform the process

when-it-is-done the conditions that must be satisfied to say the process
has been completed corr"ctly

where-to-put-it the state data to update in order to reflect the results of
the process

measuring how well it has been done quality and productivity metrics are required to support
process improvement

Each of these components of the model is briefly discussed in the following paragraphs.

3.1.3 Realizations of Process Models (or what-to-do)

Each software development project will result in a realization. A realization is a usage hierarchy of
the specific processes that need to be performed to complete the given software development project. The
realization can be developed by specializing the process model with the details of the actual software
development. From the usage hierarchy it is possible to determine all the feasible sequences in which the
processes can be performed. Project managers must determine which of the possible sequences of processes
will result in the best utilization of resources.

Page 3-2 The Cleanroone Engineering Soft wr Develepuent Process 2/25/91

Section 3: A Box Structures Modelfor Cleanroom Engineering SET-Rt70

As the project progresses changes will occur, new information will be obtained, new ways to
minimize risk will be uncovered, etc. Each of these changes may cause the addition of new processes or the
deletion of processes from the project usage hierarchy. The result will be a revised sequence. In this way
the realization of any project is a living plan which dynamically changes to reflect the actual site of the
project.

3.1.4 Engineering Practices (or how-to-do-it)

The definition of the how-to-do-it steps is sometimes referred to as the methodology for performing
the named process. The term engineering practice seems to be a better term to use when referring to the how-
to-do-it steps for a process. The reason is that the term engineering practice is used to denote an orderly
procedure that is based upon sound scientific principles while methodology is used to denote any orderly
procedure. Therefore, by using the term engineering practice the focus is on eliminating all procedures that
are not based on sound scientific principles. The elements of an engineering practice are engineering tasks.

3.1.5 Completion Conditions (or when-it-is-done)

In the process model of software development each process has a dountil structure. The until part
is a set of completion conditions. Completion conditions are predicates that engineers use to determine if
the process is complete. Completion conditions examine the results of the process as recorded in the state
data. For leaf nodes in the usage hierarchy the do part of the process is composed entirely of engineering
tasks. These engineering tasks for the development and certification portions of the project cycle are defined
rigorously by the Cleanroom engineering practices. For the specification portion of the life cycle the
engineering tasks are not yet defined rigorously since no one has yet defined a set of rigorous engineering
practices that someone can follow in order to develop a specification. For intermediate nodes of the usage
hierarchy the do part of the process is composed of a control structure defining which subprocess should be
invoked.

3.1.6 State Data (or where-to-put-it)

The view point of the model is that engineers perform processes by referencing files that contain the
state data which define the current state of the project. At each stage the engineers find the information they
require in the state data files, use their intellect guided by the Cleanroom Engineering practices to make a
next invention and then record the invention along with its rationale, and where applicable, a verification
in the new state. This process continues until the design is complete. Engineers always make small
inventions followed by verifications where possible, until the completed software is available. When the
software is complete and certified the state is used to produce the final responses in terms of distribution
software, maintenance software, final specification, user documentation, design documentation and project
metrics. During the course of the project the project team needs to produce intermediate results that are used
by people out side of the project to access progress and the adequacy of the design to determine if the software
will meet its design objectives. The intermediate results need to be extracted from the state data files as they
then exist.

The state data then plays an essential role in a software project. It is vital that the project team and
all other interested parties agree on a format for the files that contain the state data and that the project team
be meticulous in maintaining all project information in the state data files in the prescribed form. In this way
the everyone associated with the project can proceed with confidence.

2/28/91 The Cleanroom Engineering Software Development Process Page 3-3

SET-IR70 Section 3: A Box Structures Modelfor Cleanroom Engineering

A good analogy is the financial records of a company. The reason accountants can produce financial
accounts that everyone generally accepts as representing the current state of the financial progress of the
company is that they meticulously maintain files containing the state data that reflect all the transactions and
they then follow processes to extract the required information for some report. The process works because
it is orderly and followed meticulously. The same can be true for software projects. The significant
difference between accounting and software development is that in accounting the transactions that are
tracked in the state files come from outside the accounting department while in a software project the
transactions reflected in the state files result from inventions made be the software engineers. But the need
for meticulous record keeping is the same.

3.1.7 Measuring Quality and Productivity (or measuring how well it has been done)

Organizations desire to organize the process by which software is developed so there is a high
probability that the software will: (1) provide its users with high quality service, and (2) be developed with
the minimum possible investment. Organizations require measurements to determine how well they are
succeeding in accomplishing their objectives. If people do not measurements they are flying blind and have
no idea how well they are doing against overall objectives or how different teams are performing relative
to each other. Organizations find it relatively easy to make gross measurements of productivity but using
conventional software development practices they find it exceedingly difficult to measure the quality of the
software. They know they have produced 10,000 lines of code with 70 staff months of effort. The question
is how many latent failures remain in the software. If they are many latent failures much more effort will
be required. The problem is how much more effort.

One of major difficulties being faced by researchers trying to model conventional software
development practices is what pseudo measures to use to determine the quality level of the software as it is
being developed. This is not a problem for Cleanroom development since development occurs in a pipeline
of user executable increments and following the addition of each increment to the accumulating software
accurate projections of the quality of the software as developed are made. The measurements result in
accurate estimates of the Mean Time To Failure (MITE) for the software as it then exists. As a result
engineering managers have a continuing measurement of the quality of the development process for which
they are responsible. In this way they can take prompt corrective action whenever the process begins to slip
out of control. This feature greatly simplifies the actual development of software. It makes it much easier
to develop a model of the software development process.

3.1.8 Using A Process Model

In creating a process model the goal is to develop an abstraction of reality that is sufficiently complete
and accurate so that one can use the model to reason about real software development projects which are
complex and messy. On the other hand the abstraction should be small and simple enough so the people are
able to use it conveniently to reason about real software development projects. Process models are used in
several different ways to help engineers and managers develop software. These include:

priWect Planning. A project plan is defined by a usage hierarchy of all the processes required to
complete a definite software development project. This can be accomplished by expanding the
model usage hierarchy into a usage hierarchy for a definite software development project. The
precise expansion will depend on the project. There are as many different realizations of usage
hierarchies possible as there are software projects.

Page 3-4 The Cleanroom Engineering Software Development Process 2/28/91

"Secdon 3: A Box Structures Modelfor Clenaroom Eggiseering sE.1RO

Project Scheduling. Given a project plan it is necessary to prepare a schedule which allocates
available resources to the project in accordance with the project plan. Given a plan in the form of
a usage hierarchy, estimating metrics for each process and a definition of availableresources it is easy
to prepare a project schedule. Expenditure of effort and reported progress toward completing the
process can be recorded against the schedule. The schedule provides a convent way for engineers
and managers to communicate about expectations and accomplishments.

Engineering Managcment. Engineers who are performing a project require day-to-day guidance as
they perform an assigned process. A precise description of how to perform a process and what needs
to be shown to know the process has been completed satisfactorily are what engineers need to know
in order to manage their work on a daily basis. A process model should provide engineers and
engineering management with the ability to know what to do and communicate with each other about
current status of a process.

Project Monitoring. The successful performance of any process requires the ability to measure the
progress being made toward completing the process. One of principal difficulties with software
development as practiced today is obtaining accurate measures of progress in terms of quality. The
lack of accurate quality measures forces people to define pseudo measures. This complicates both
actual practice and models of the process. A big advantage of Cleanroom is that the engineering
practices being followed provide frequent and accurate measurements of software quality. Therefore,
the process model for Cleanroom is less complicated as are actual projects.

Process Imvment. An important feature of any operation is that the operation requires a built
in way to constantly monitor operations and then improve the operation on a continuing basis. A
prerequisite to evolutionary development is to have a model of the processes and practices being
followed. In this way it is possible for management to reason about what changes to make in the
current process in order to maximize the return on the investment in process improvement and to then
make measurements in order to determine if the targeted results were realized.

3.2 A Guide To The Process Model

The balance of this section is organized into eight sections as follows. Sections 3.3 and 3.4 describe
the stimuli that the engineering team receives as they design and develop the software and the responses they
are required to produce during the project and at the completion of the project. The engineering team receives
six stimuli and must deliver thirteen responses. There is nothing unique about these stimuli and responses
for a Cleanroom Engineering project. These stimuli and responses are the same for all software development
projects no matter what processes and engineering practices are being used to define the software. In Section
3.5 the first level Black Box is described. The functions which describe how engineers produce responses
in terms of stimuli histories are what distinguish one software development methodology from another.
Therefore, definition of the Cleanroom Engineering process is begun in this section.

Section 3.6 describes the state data that engineers need to maintain as they process the stimuli. The
state data are inventions which are made to represent the cumulative effect of all the stimuli received - that
is, the stimuli histories. Eight classes of state data have been invented. In Section 3.7, the first level State
Box transformation is introduced. In Section 3.8, the first level Clear Box is described and then decomposed
into 6 second level Black Boxes which are in turn decomposed into 18 third level Black Boxes in Section
3.9. A total of 25 Black Boxes then define the processes that make up a Cleanroom Engineering project. Each

2V28/91 The Cleanroom Engineering Software Development Process Page 3-5

SET-IR70 Section 3: A Box Sructumres Modelfor Cleanroom Engineering

process is described in terms of pseudocode or text and also has a graphical representation in terms of Box
Structures. Section 3.10 addresses the issue of reviews and how they are perceived in the Cleanroom process.
Section 3.11 discusses some of the differences between this model and other software development models.
Section 3.12 summarizes how the model can be used.

These 25 processes define a generic work break-down structure which can then be used by
engineering team management to develop a specific project plan. The form of each leaf process Clear Box
is an iteration Clear Box where the completion criteria for the process are the predicates which define when
the iteration loop is complete. This style of representation works very nicely to define a model which is
simple to comprehend and use to plan and control projects but which is sufficiently complete to model even
the most complex software development process. The use of formal procedures to develop the project cycle
for Cleanroom Engineering has produced useful results. Section 4 provides detailed descriptions of the 25
processes.

The model as developed defines tasks performed by Cleanroom Engineering teams and first line
managers. These engineering teams interface with many different groups, all of whom have an interest in
the successful conclusion of the project. These groups typically include -the line management of the
organization to which the engineering team belongs, members of the staff organizations that advise the line
managers and representatives of the customer's organization that is buying or contracting for the software.
The groups that participate and the extent of their participation depend on the situation. In the following
pages, these diverse groups are sometimes referred to by the abstraction "Management." Management, as
represented by this abstraction, takes on several roles: it is the engineering group's client, it is the consumer
of the software, it establishes and changes requirements, it provides resources, it measures progress, it
establishes rewards and punishment for good and poor work, and it accepts and rejects the completed
software.

In balance of this report, the following notation is used to represent various objects involved in the
model as follows:

Si to represent Stimuli i.
Ri to represent Response i.
Ti to represent sTate data i. (T was used since S was already being used and T follows S.)
Ei to represent Engineering process i.
Ci to represent Condition i.
Ii to represent Internal stimuli i and response i that represent messages passed between processes.

3.3 Stimuli To First Level Cleanroom Engineering Black Box

The engineering team receives stimuli as they design and develop the software. There is very little
the engineering team can do to influence the form in which stimuli arrive. They must iccept and process
the stimuli guided by their intellect the best way possible as they are received. The six stimuli they receive
are:

SI Project Charter

The Project Charter defines the instructions that the engineering team receives to undertake the
software development. The Project Charter either directly or implicitly defines the scope of the effort, what

Page 3-6 The Cleanroom Engineering Software Development Process 2/28/91 1

Sectton 3: A Box Structures Modelfor Cleawroom Exghaerihg SET-1R70

is expected, the target schedule and budget, references to what is known about the situation and plans for
software automation, and provides the authorization to the engineering team to expend effort. The Project
Charter should be amended as required in order to modify instructions to the engineering team.

S2 Documents/Working Papers

Documents/Working Papers represent all written material, excluding the Project Charter, Project
Review Minutes, and Master Project Plan, that is given to the engineering team from outside organizations.
Typically, much thought and effort precedes the decision to undertake a software development project, and
much effort is expended to gather source material. Typically, written material continues as the project
progresses. These writings have many formats and contain vital, as well as irrelevant or misleading,
information. Often related efforts to design hardware, manual processes, etc., proceed in parallel with the
software engineering effort and result in a continuing series of documents.

S3 Informal Communication

In addition to the Documents/Working Papers received from people outside the engineering team,
the engineering team receives information informally (much of it orally) from outside groups. This stimulus
is called Informal Communication. The stimulus represents any solicited or unsolicited informal information
given to the Specification, Development and/or Certification teams by any outside organization. This
material may or may not be useful to the engineering team.

S4 Project Review Minutes

During the course of a project, the engineering team participates in Project Reviews. A Project
Review is a formal meeting where people outside of the engineering team review one or more aspects of the
proposed software solution. The result of these reviews are suggestions, recommendations and information.
These results should be documented in Project Review Minutes by the review team.

SS Resource Allocation

The knowledge team members possess in the application and solution domains have a direct bearing
on the success or failure of the project. The combined team experience and knowledge is a stimulus to the
project. Additionally, computers, software tools and other items that have an effect on the specification,
development or certification of the project are considered a part of this stimulus.

S6 Master Project Schedule

Along with the Project Charter (sometimes subsequent to it) the engineering team is given a Master
Project Schedule which defines dates of system-wide reviews, as well as start and end dates for the entire
project. A schedule for the submission of status reports and project reviews may also be included. This
schedule will later be updated by information received from the software engineering team to include
intermediate review and build schedules.

2/28/91 The Cleanroom Engineering Software Development Process Page 3-7

SET.IR70 Sectdo 3: A Box Sructmres Modelfor Ceanroom Eaginering

In summary, software project stimuli are:

S 1: Project Charter
S2: Documents/Working Papers
S3: Informal Communication
S4: Project Review Minutes
S5: Resource Allocation
56: Master Project Schedule

Readers will note that project requirements have not been listed as stimuli to the software project.
The requirements are, of course, stimuli to the system. But requirements appear in a number of ways. Ideally,
many of them are listed in the Project Charter. Many may also appear as Documents or Working Papers.
There is often a report that includes "Software Requirements" in its title. Other requirements arrive as a result
of Informal Communication. The bottom line is that the requirements are stimuli, but are not a unique or
separate stimulus, since they almost always appear in a variety of forms.

3.4 Responses From First Level Cleanroom Engineering Black Box

The engineering team provides responses to people outside the engineering project both during the
project and at the completion of the project. The responses that are the objective of the project are produced
at the completion of the project. There are five responses. There are eight responses that the engineering
team produces during the course of the project. The thirteen responses are summarized in subsequent
paragraphs. An additional discussion of Cleanroom Engineering responses appears in 3ection 6.

RI Distribution Software
R2 Maintenance Software

The software as designed, implemented and certified as meeting requirements can be regarded as the
primary response of the Cleanroom Engineering project. This software is packaged in two forms. The first
is the software ready for distribution - the Distribution Software. The second is the software ready for the
organization responsible for archiving and maintaining the software - the Maintenance Software.

R3 Final Specification
R4 User Documentation
R5 Archived Documentation

The software must be documented in several forms as follows:

1. The Final Specification defines what the software does from both the user's standpoint and the
computer's vantage point and the usage profile which the software has been designed and
certified to satisfy.

2. The User Documentation which is employed by users to help them use the software. The format
and extent of User Documentation depends on the requirements. Typically it may include
reference manuals, tutorial manuals, education material and marketing documentation.

Page 3-8 The Clumroom Eqiiuw*ig Soefmm Deleopumnt Process 2/28/91

Section 3: A Box Structures Modelfor Cleanroom Engineering SET-Ut70

2. The Archived Documentation represents the final state of the Cleanroom Engineering
development process when the software is complete and certified. From one point of view,
software development can be regarded as developing the state during the entire software solution
specification, design, implementation and certification process and then once the software is
complete the converting of the state into the responses as defined above. The Archived
Documentation is a permanent set of documentation that represents the final state. The extent
and formality of the Archived Documentation is specified by the requirements.

R6 Project Review Documentation

Project reviews are meetings between the engineering team and one or more external organizations.
engineering teams prepare documentation for use at project reviews. Project reviews are typically held on
projects at critical points in the life cycle so project sponsors and/or management can assess progress and
the degree to which the software as it is being designed meets the needs which are to be satisfied by the
software. Additionally, project reviews can be called by project management when they see a need' or on
a schedule, such as a monthly status review. The exact nature of the documentation that is produced for these
reviews typically depends on the nature of the development contract or the customs of the organization. For
example, if the contract is being developed under a government contract, the reviews may be specified by
2167 or 2167A. Other organizations have their own specifications for project review documentation. This
project review documentation must be produced at the specified time in the specified format from the state
data. This documentation is produced at many different points in the project life cycle. In many cases, the
development organization is free to propose a format for Project Review Documentation.

R7 Project Schedule

The Master Project Schedule is updated with schedule information received from the Cleanroom
Engineering team. The Project Schedule is the response which provides this information. The schedule is
a published description of the schedule of milestones and deliverables between the engineering teams and
management. The dates given in the Project Schedule commit the engineering team to a schedule for
production of the system, to which "management" can hold the engineering team accountable.

R8 Management Metrics

Measurements of engineering processes are collected routinely. The measurements are used by
management to control the development and to study development performance in order to find improvements
for future projects. Individual managements will want to collect different information; therefore, the exact
metrics collected will differ from project to project. These measurements as defined for permanent archiving
are referred to as Management Metrics.

R9 Project Status Reports

Project Status Reports are distributed to management based on the schedule dictated in the Master
Project Schedule. Information in the reports allows management to assess the status of the project regarding
budget and resources, and make modifications to the project as necessary.

2/28/91 The Cleanroom Engineering Software Development Process Page 3-9

SET-IR70 Secdon 3: A Box Structures Model for Cleanroom Engineering

RIO Externally Submitted Questions or Issues

During a project, there are often questions or issues that cannot be answered by members of the
Certification, Devetopment or Specification teams. These questions or issues are submitted to organizations
outside the engineering task in order to be resolved. The issues are resolved, with their response being either
Documents/Working Papers or Informal Communication.

R11 Schedule Change Request

During a project, the engineering team may determine that a milestone or deliverable may not be
completed on schedule. For these types of situations, the engineering team must have the opportunity to
request a schedule modification. This request will prompt management to analyze the issue and determine
whether to grant a schedule change. If the change is accepted, the engineering team will receive a new Master
Project Schedule as a stimulus.

R12 Suspend Project Pending Management Decision

During a project, the case may arise where the engineering team believes that the project must be
suspended. For example, the team may determine that the code does not meet the specifications, or that the
specifications do not meet the requirements. Since management has the final decision as to whether the
project should be suspended, this response is a prompt to management to closely assess the project and make
a decision, as to how the project will continue, or whether the project should be reorganized or cancelled.

R13 Project Reports

During a project, the Specification, Development or Certification teams may produce a document
that has use outside of the engineering team. These documents are published outside the engineering team,
so other individuals in the organization can use the knowledge gained by those members of the engineering
team.

In some cases, a project sponsor will decide that some other responses are necessary, in addition to
the ones that appear in this section. These additional responses are not addressed because it would be
impossible to identify the full range of potential responses. The responses discussed are a fundamental set
of project responses. Some additional responses can be accounted for by viewing them as material that must
be a part of a review. As reviewed material, it will be delivered to the sponsor. For other responses, it may
be necessary to tailor this document for the specific organization and project in order to account for such
requests.

In summary, software project responses are:

RI: Distribution Software
R2: Maintenance Software
R3: Final Specification
R4: User Documentation
R5: Archived Documentation
R6: Project Review Documentation

Page 3-10 The Cleanroom Engineering Software De velopment Process 2/28/91 U

Secdon 3: A Box Structures Modelfor Ceanroom Egineering SET.I706

R7: Project Schedule
R8: Management Metrics
R9: Project Status Reports
RIO: Externally Submitted Questions or Issues
RI 1: Schedule Change Request
R12: Suspend Project Pending Management Decision
R13: Project Reports

3.5 First Level Cleanroom Engineering Black Box

First Level Black Box Transformation

The stimuli are analyzed and processed by the Cleanroom Engineering team using Cleanroom
Engineering ideas and practices and the team's accumulated experience and intellect. The team develops
the responses proceeding top down with small step inventions guided by bottom-up explorations to increase
understanding. The stimuli define a system to be developed. The Cleanroom Engineering model defines
a set of iterative processes by which the stimuli are understood and the responses are designed, verified,
implemented and certified. If the Cleanroom Engineering ideas are followed, the inventive process will
proceed in an orderly manner under intellectual control. As a result, the process has the following very
desirable feature: if software is developed by different teams (which are competent in Cleanroom
Engineering practices) from the same specification, the resulting software solution will be very similar. The
first level software engineering Black Box is graphically described in Figure 3.5.1.

3.6 State Data: A Summary

During the software development project, the project team studies and analyzes the data contained
in the stimuli and information derived from the stimuli, and develops the required responses using
Cleanroom Engineering concepts and practices. The team records the insights gained from many individual
analyses and the results of many small inventions and invention verifications in files which contain the state
of the software. These files represent the state of the software design and implementation at any point in
time during the inventive process. These files may be electronic or paper.

Engineers performing each of the Cleanroom Engineering processes that comprise a software
development project work primarily with the files containing the state data which define the current state of
the project. At each stage, the engineers find the information they require in the state data files; use their
intellect guided by Cleanroom Engineering processes to make a next invention; and record the invention
along with its rationale (and where applicable, a verification) in the new state. This process continues until
the design is complete. The engineers always make small inventions followed by verifications where
possible, until the completed software is available. When the software is complete and certified, the state
is used to produce the final responses in terms of distribution software, maintenance software, final
specification, user documentation, archived documentation and project metrics.

During the course of the project, the team needs to produce intermediate results that are used by
people outside the project to assess progress and the adequacy of the design to determine if the software will
fulfill its assigned mission. The intermediate results need to be extracted from the state data files as they then
exist.

2128/91 The Cleonroom Engineering Software Development Process Page 3-11

SET-IR70 Section 3: A Box Structures Modelfor Cleanroom Engineering

The state data then plays an essential role in a software project. It is vital that the project team and
all other interested parties agree on a format for the files that contain the state data and that the project team
be meticulous in maintaining all project information in the state data files in the prescribed form. In this way
everyone associated with the project can proceed with confidence.

All software project state data can be maintained in eight fil, summarized in this section. A more
complete description of each of the state data files is presented in -ion 5.

Figure 3.5.1 Black Box for Cleanroom

RI: Distribution
Software

R2: Maintenance
Software

R3: Final
Cleanroom Specifications

R4: User

Documentation
Si: Project Charter R5: Archived
S2: Documents/ Documentation

Working Papers R6: Project Review

S3: Informal Documents
Communication R7: Project Schedule

S4: Project Review R8: Management
Minutes Metrics

S5: Resource R9: Project Status

Allocation Reports

S6: Master Project R10: Externally

Schedule Submitted
Questions or
Issues

RI 1: Schedule Change
Request

R12: Suspend Project
Pending
Management
Review

R13: Project Reports

The viewpoint taken by this model that all intermediate results of engineering processes are
state data makes the model much easier to develop and use. When the actual data produced on projects
is considered state data, it is much easier to manage and perform on software development projects
since it moves the data out in the open and makes it public to all members of the engineering teams.
This is in contrast to other abstractions that continue to regard project state, other than deliverables,
as private data that if ever available is only regarded as an artifact.

Page 3-12 The Cleanroom Engineering Software Development Process 2128/91 5

S$ccgon 3: A Box Smwcmres Modelfor Cleanroom Enxgnering SET.ER7O

Ti Project Document Files

The project document file contains a library of documents that are relevant to the project. The library
contains six types of documents:

1. a Project Document Index which describes the organization of the contents of the files,
2. External References which are documents prepared by groups outside the project,
3. Project Reports which are documents that have been prepared by some project team member and

published outside of the project,
4. Working Papers which are internal documents prepared by some project team member that are

internal to the project team,
5. Trade Studies which evaluate the relative value between alternatives using a quantitative

comparison scheme, and
6. Project Review Minutes which define conclusions and action items from project review

meetings.

This material is available to all members of the engineering team for use as reference documents. The file
should be the archive of all externally received material, as well as internal work that is not limited to a
specific team. More detailed descriptions of the Project Document Files are given in Sections 5.0 and 5.1.

T2 Software Specification Files

The Software Specification files contain the official copy of the specifications for the software. This
file is maintained in electronic form using a desk top publishing system chosen by the project team. The
specifications are in six volumes as follows:

1. the Mission Volume which defines the mission the software is to perform,
2. the Users Reference Manual Volume which defines all the external inventions (stimuli and

responses) which define the software from its user's perspective,
3. the Black Box Function Volume which defines an implementation free internal view of the

software in terms of Black Box functions,
4. the Black Box Function Verification Volume which justifies the correctness of the Black Box

Function Volume,
5. the Usage Profile Volume which defines the expected usage profile of the software by its users

in the planned usage domain, and
6. the Construction Plan which presents the schedule for deliverables and milestones that the

engineering team will follow.

The Software Specifications are developed using a spiral workplan. More detailed descriptions of the
Project Document Files are given in Sections 5.0 and 5.2.

T3 Software Development Files

The Software Development files contain documents that are relevant to the Development team. The
file contains eight types of documents:

2/28/91 The Cleanroom Engineering Software Development Process Page 3-13

SET-IR70 Section 3: A Box Structures Model for Cleanroon Engineering

1. a Design Index which defines all references to design objects.
2. Trade Studies that evaluate the relative value between alternatives using a quantitative comparison

scheme,
3. Boxes that define the Black, State and Clear Box transition formulas for each box in the usage

hierarchy,
4. Verifications which record the verification arguments for box expansions and code expansions,
5. Code Refinements that define the expansions of Clear Box functions into code,
6. Design Notes that record any information that the designer feels should be preserved,
7. Code, and
8. Metrics.

These eight categories are sufficient to serve as a referencing and archiving schema of the entire
Development team process. More detailed descriptions of the Software Document Files are given in Sections
5.0 and 5.3.

T4 Software Certification Files

The Software Certification files contain documents that are relevant to the Certification team. The
file contains eight types of documents:

1. a Certification Index which describes the organization of the remainder of the file,
2. Certification Notes which are used to preserve any issues pertaining to certification,
3. the Sampling Plan which defines how to estimate the reliability of the software to be certified,
4. Script Generators/Test Scripts which are scripts or code that define the next input for each test

case,
5. Test Scenarios which define the test cases to be run,
6. Solutions that are the expected output for each test case,
7. Results which record what was produced by a test scenario for a version of code, including a pass/

fail determination, and
8. Metrics.

This information is sufficient for the Certification team to complete all of their processes and for later
archiving of their work. More detailed descriptions of the Software Certification Files are given in Sections
5.0 and 5.4.

T5 Project Management Files

The Project Management Files contain documents that are necessary to manage and control a project.
This file contains six types of documents:

1. the Project Charter,
2. Master Project Schedule,
3. Engineer Activity Records which are all status reports submitted outside of the engineering team,
4. the Project Schedule,
5. all Task Assignments, and
6. Metrics.

Page 3-14 The Cleanroom Engineering Software Development Process 2/28/91

Section 3: A Box Stwtures Modelfor Cleaaroom Engineering SET-RO70

This information should be sufficient to support decision making, or the review of project status by
engineering team members. More detailed description of the Management Files are given in Sections 5.0
and 5.5.

"T6 Unresolved Questions or Issues

Each time the engineering team asks a question to others inside or outside the engineering team to
gain more information, test a hypothesis, etc., the question is recorded in the unresolved question file. When
the answer is received it is recorded in the same file. More detailed descriptiols of the Unresolved Questions
or Issues are given in Sections 5.0 and 5.6.

T7 Pre-Release Software

The Pre-Release Software file is the library of software that has been turned over to the Certification
team by the Development team for certification. This file is maintained by the Certification team using
rigorous configuration management techniques. If the Development team requires a copy of some of the
software to remedy an observed failure, they request a copy from the Certification team. The fix for the

observed failure is returned to the Certification team by the Development team as an engineering change.
The engineering change specifies the changes required to each affected software module. The Certification
team applies the changes and resumes the certification process with the new version of the software. The

Certification team must maintain a library of the source code and an executable version of the software that
they use for testing. Pre-Release Software files are electronic files that can be maintained using any
applicable software library system. More detailed descriptions of the Pre-Release Software appear in
Sections 5.0 and 5.7.

T8 Failure Reports and Engineering Changes

Each failure encountered by the Certification team as they measure the reliability of the software is
recorded in a failure report. The failure report contains the following information: Test Scenario
Identification, Description of Test Scenario, Type of Failure, Location of Failure in Scenario, Test Results
Prior To Failure, Description of Observed Failure, Specification Reference For Observed Failure, Observations
that may help the developers locate the failure source, and Attachments as required. When the failure is
resolved the identification of the Engineering Change Notice (ECN) that is intended to fix the failure is noted.
The Engineering Change Notice contains the following information: Identification of Failure Report(s)
Fixed By This ECN, Textual Description of Change, Routines Modified By ECN, Definition Of Changes
Made To Each Routine, Source of Error (Specifications, Black Box, State Box, Clear Box, Code, Previous
Modification), and Statement that all required files have been adjusted to reflect change. More detailed
descriptions of Failure Reports and Engineering Changes appear in Sections 5.0 and 5.8.

2/28/91 The Cleanroom Engineering Software Development Process Page 3-15

SET-IR70 Seetion 3: A Box Structures Modelfor Cleanroom Engineering

In summary the state data is:

TI: Project Documentation File
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
T5: Project Management Files
T6: Unresolved Questions or Issues
T7: Pre-Release Software
T8: Failure Reports and Engineering Changes

State Migration and Maintenance

A critical issue in designing a software or system process is to determine where state data will be
maintained. There is a struggle between two seemingly contradictory goals: to migrate state data to the
lowest level where all the processes not using it cannot access it, and to migrate state data to the highest level
where all the processes using it can access it.

In defining the Cleanroom process, it was determined that the best place to keep the state data is at
the highest level of the system. This decision was made since nearly all of the high level processes use nearly
all of the state data, making modularization illogical. Of course, a different configuration of state data could
be designed; but this approach, it was felt, made the description of Cleanroom the clearest and most practical.

3.7 First Level Cleanroom Engineering State Box

State Box Transformation

The transformation for the top level Cleanroom Engineering State Box is a function that maps the
state and the current stimuli to the responses and modified state at the current level of development.
Ideally, this transformation should be automatic, but most likely for some period of time, it will take manual
writing effort to prepare publishable responses from the state. The first level Software Engineering State
Box is illustrated in Figure 3.7. 1. The responses are produced by iteratively modifying the state, as well as
from receiving new stimuli. After a number of iterations, transformations and refinements, parts of the state
data are presented as responses.

3.8 First Level Cleanroom Engineering Clear Box

The top level Clear Box is a control structure that defines the life cycle as all work for translating
the stimuli into responses, and the maintenance of the state has been transferred to lower level boxes. Six
such lower level Black Boxes have been defined. To indicate that the life cycle is much more complex than
a waterfall model, parallel processes are indicated. It is critical to note the relationship between processes
using this model. Rather than having the need for each process to communicate with every other process,
the state data is updated by each process that uses a particular part of the state data. This prevents the need
for communication between processes as the source of information Is constantly modified and kept up to
date.

Page 3-16 The Cleanroom Engineering Software Development Process 2V28/91 B

Sectimn 3: A Box Structures Modeffor Clkaxroom Engineering SET-IR70

Figure 3.7.1 State Box for Cleanroom

Cleanroom
RI: Distribution

TI: Project Document Files Software
T2: Software Specification Files R2: Maintenance
T3: Software Development Files Software
T4: Software Certification Files R3: Final
T5: Project Management Files Specifications
T6: Unresolved Questions or Issues R4: User
17: Pre-Release Software Documentation
T8: Failure Reports and Engineering Changes R5: Archived

Documentation
R6: Project Review

DocumentsS1: Project Charter R7: Project ScheduleS2: Documents/ R8: Management

Working Papers Metrics
S3: Informal I R9: Project Status

Communication I Reports
54: Project Review RIO: Externally

Minutes Submitted
S5: Resource Questions or

Allocation Issues
S6: Master Project RI 1: Schedule Change

Schedule Request
R12: Suspend Project

Pending
Management
Review

R13: Project Reports

The Cleanroom process is described by the following algorithm.

Clear Box Cleanroom (E0)

Stimuli
S 1: Project Charter
S2: Documents/Working Papers
S3: Informal Communication
S4: Project Review Minutes
S5: Resource Allocation
S6: Master Project Schedule

2/28/91 The Cleanroom Engineering Software Development Process Page 3-17

SET-IR70 Secdon 3: A Box S$rctures Modellor Cleanroom Engineering

Responses
Ri: Distribution Software
R2: Maintenance Software
R3: Final Specification
R4: User Documentation
R5: Archived Documentation
R6: Project Review Documentation
R7: Project Schedule
R8: Management Metrics
R9: Project Status Reports
RIO: Externally Submitted Questions or Issues
RI 1: Schedule Change Request
R12: Suspend Project Pending Management Decision
R13: Project Reports

State
TI: Project Document Files
"12: Software Specification Files
"T3: Software Development Files
"T4: Software Certification Files
T5: Project Management Files
T6: Unresolved Questions or Issues
T7: Pre-Release Software
T8: Failure Reports and Engineering Changes

begin

use El: Project Invocation
con

use E2: Program Management
use E3: Project Information Management
do

do
use E4: Software Solution Specification
use E5: Software Development and Certification

until
Cl: Software Ready for Release?

od
use E6: Prepare Final Project Releases

od
noc

end Clear Box Cleanroom

Page 3-18 The Cleanroom Engineering Software Development Process 2/28/91

Section 3: A Box Structures Model for Cleanroom Engineering SET-1R70

The top level Clear Box breaks the Cleanroom process into a number of conditions and processes,
which represent a high-level view of the parts of the Cleanroom process. General descriptions of each
condition and process are given in the following paragraphs, while more detailed descriptions of these and
the lower level processes (along with more detailed condition descriptions) are presented in the remainder
of Section 3 and in Section 4.

C1 Software Ready for Release?

This condition is the opportunity for management to decide whether the project is ready for release.
If the condition is true, the final project releases are prepared; otherwise, the software specifications are
rewritten to account for the shortcomings and additional development and certification will commence.

El Project Invocation

In this process, the Project Charter, Resource Allocation and Master Project Schedule are received
as stimuli, with Externally Submitted Questions and Issues and El's process completion as responses. The
transition leads to staff and resource allocation, with planning the software development approach, and
preparation of the initial project schedule.

E2 Program Management

This process receives the completion of process El as a stimulus and has Project Review Documents,
Project Schedule, Project Status Reports and a Schedule Change Request as responses. The transition for
this process includes maintenance of the project schedule, preparing for and conducting project reviews and
preparing and submitting status reports.

E3 Project Information Management

Stimuli to this process are the completion of process El, the Project Charter, Documents/Working
Papers, Informal Communications, Project Review Minutes, Resource Allocations and the Master Project
Schedule. The responses from this process are Externally Submitted Questions _A..l Issues. Actions done
in this process include receiving stimuli and submitting questions or issues.

E4 Software Solution Specification

In this process, the stimuli are the completion of process E l and the value of condition Cl, if it is
evaluated. Responses include the completion of process E4, Suspend Project, and Project Reports.
Transitions include understanding the problem and solution domains, and writing the software specifications.
Additionally, the construction plan is prepared.

ES Software Development and Certification

This process receives E4's completion as a stimulus and has E5's completion and Project Reports
as responses. The actions performed in this process include the development and certification of increments.

2/28/91 The Cleanroom Engineering Software Development Process Page 3.19

SET-IR70 Section 3: A Box Structures Modelfor Cleanroom Engineering

E6 Prepare Final Project Releases

The stimulus to this process is the completion of ES, and the response from this process consists of
Distribution Software, Maintenance Software, the Final Specifications, User Documentation, Archived
Documentation, and Management Metrics. In this process, the final deliverables for the project are packaged
and delivered.

A diagram presenting the Cleanroom Engineering Clear Box is presented in Figures 3.8.1 and 4.0.1.
(Note to the reader: The graphical descriptions of clear boxes are referenced in both this section and Section
4. Except for the Cleanroom clear box which is duplicated in both sections all other graphical descriptions
are only included in Section 4 since that is the section that is designed for long-term reference during projects.
Figure 3.9.5.1 includes all the processes imbedded in higher level processes. Some readers may find this
figure to be helpful as the develop an understanding of the model.) In the graphical description of Clear
Boxes, arrows that divide and lead to multiple process boxes or conditions imply that these processes can
work concurrently. That also means that the flow of control can and will be in more than one place at a time.
The reasons for this are twofold: 1) the fact that there are three different teams (Specification, Development
and Certification) gives each team a different set of responsibilities; and 2) the. fact that each team has more
than one member makes it possible that each team can be working on more than one process at a time. There
is some information on this diagram that is not contained in the algorithm. The main information the diagram
shows is which Cleanroom team is responsible for which process: M for Management, S for Specification,
D for Development, and C for Certification.

3.9 Second Level Cleanroom Boxes

Each of the six first level Cleanroom processes will be described as a second level box. Four of the
six first level Cleanroom processes describe a number of lower level processes which are of sufficient
complexity to warrant a second level box being presented here. The boxes to be described on a lower level
are the following: Program Management, Project Information Management, Software Solution Specification,
and Software Development and Certification. All of these second level processes have lower level Black,
State and Clear Boxes.

Since the state data for higher level processes are available to lower level dependent processes, it has
been chosen for clarity to repeat all first level state data in the second level boxes with the label Outer State

3.9.1 Program Management

The Black Box for Program Management (process E2) has only one stimulus. It is a signal which
states that process E l has been completed. This is an internal stimulus, since it did not appear in the first level
Black Box for Cleanroom. Additionally, Program Management has four responses: R7 - the Project
Schedule, R6 - Project Review Documentation, R9 - Project Status Reports, and R1 - a Schedule Change
Request. The transformation for E2 includes the maintenance and release of the project schedule, preparing
and conducting project reviews and preparing and submitting status reports.

The State Box for Program Management is the same as the Black Box. This is the case because no
lower level state data requirements were found for the Program Management process.

Page 3-20 The Cleanroom Engineering Software Development Process 2/28/91 9

SeCtiox 3: A Box Stucturrs Modelfor Ckeawoom Engineering SET-IRIO

The Clear Box for Program Management, where actual processing is defmed for the process, is a
refinement of the black and State Boxes.

Figure 3.8.1 Clear Box for Cleanroom

EO: Cleanroom

Outer State Ti: Project Document Files
"2: Software Specification Files

T3: Software Development Files
T4: Software Certification Files
T5: Project Management Files •
T6: Unresolved Questions or Issues
T7: Pre-Release Software RI: Distribution
T8: Failure Reports and Engineering Changes Software

I A R2: Maintenance
Software

R3: Final
Si: Project Charter I Specifications
S2: Documents/ , R4: User

Working Papers E2: Documentation
S3: Informal R5: Archived

Comm at Management Documentation
S4: Project Review El: M,S,D& R6: Project Review

Minutes Project Documents
S5: Resource Invocatin R7: Project

Allocation M,S,D&C E3: Project Schedule
$6: Master Project Information R: Management

Schedule LMa Inagefment Metrics
tR9: Project Status

S,D&C Reports
RlO: Externally

Submitted
ftwa Questions or

-t esIssues
E4: Releas RlR : Schedule

M Change
Request

E ES: R12: Suspend
Software Software Prepare Final Project
Solution|-,w D ,v.lp -, project Releases R13: Project Reports
Specification and Certification S eD&C

M,S,D&C S,D&C

2/28/91 The Cleanroom Engineering Software Development Process Page 3-21

SET-IR70 Section 3: A Box Structues Modelfor Cleanroom Engineering

The Program Management process is described by the following algorithm.

Clear Box Program Management (E2)

Stimuli
11: E I Completed

Responses
R6: Project Review Documentation
R7: Project Schedule
R9: Project Status Reports
RI 1: Schedule Change Request

Outer State
TI: Project Document Files
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
T5: Project Management Files
T6: Unresolved Questions or Issues
17: Pre-Release Software
T8: Failure Reports and Engineering Changes

begin

do
con

if C2: Schedule to be Modified/Published?
then

use E7: Maintain Project Schedule
ni
if C3: Work Complete/Review Scheduled/Major Problem?

then
use E8: Prepare for & Conduct Project Review

fi
if C4: Status Scheduled?

then
use E9: Prepare & Submit Status Reports

fi
noe

until
Completion Conditions achieved

od

end Clear Box Program Management

Page 3-22 The Cleanroom Engineering Software Development Process 2/28/91 U

Section 3: A Box Sructures Model for Cleawoom Enegiserig SET-.R70

The second level Clear Box breaks the Program Management process into a number of conditions
and processes, which represent a low-level view of the Program Management process. General descriptions
of each description and process are given in the following paragraphs, while a more detailed description of
these and the lower level processes (along with detailed condition descriptions) are provided in Section 4.

C2 Schedule to by Modified/Published?

This condition is true when there is a reason for the schedule to be modified. The reasons may include,
among other things, a new Master Project Schedule or the need for new tasks to be assigned.

C3 Work Complete/Review Scheduled/Major Problem?

This condition is true when the need for a review arises. This "need" may be scheduled or
unscheduled.

C4 Status Scheduled?

This condition is true when the project schedule dictates that a status report is due to be submitted,
or measures need to be accumulated.

E7 Maintain Project Schedule

In this process, the completion of process E l is the stimulus and the Project Schedule and Schedule
Change Request are the responses. That transition consists of updating the project schedule and completing
task assignments.

E8 Prepare For & Conduct Project Review

This process receives the completion of process El as a stimulus and returns the Project Review
Documentation as a response. The transition function is fairly obvious from the process name.

E9 Prepare & Submit Status Reports

The stimulus to this process is also the completion of process El, with Project Status Reports being
the responses. The transition function includes the gathering of measurement data, as well as the preparation
and submission of status reports.

Graphically, the Program Management process appears in Figure 4.2.1.

3.9.2 Project Information Management

The Black Box for Project Information Management (process E3) has six external stimuli and one
internal stimulus. The external stimuli are: the Project Charter (SI), Documents/Working Papers (S2),
Informal Communication (W3), Project Review Minutes (S4), Resource Allocation (S5), and the Master
Project Schedule (S6). The internal stimulus is a signal which states that process El is completed. Project
Information Management also has one external response: RIO, which is an externally submitted question

2/28/91 The Cleanroom Engineering Software Development Process Page 3-23

SET-IR70 Section 3: A Box Structures Modelfor Cleanroom Engineering

or issue. There are also a number of transformations to the first level (outer box) state, which are not explicitly
stated here. The transformation for E3 includes receiving and filing all externally received stimuli. The
stimuli are filed in a manner which makes the information easily accessible by the entire staff. Additionally,
questions or issues which are to be submitted or resolved internally or submitted externally are organized
in this process, since this is where the responses to those questions are received.

The State Box for the Project Information Management is the same as the Black Box. This is the case
because no lower level state data requirements were found for the Project Information Managetnent process.

The Clear Box for Project Information Management, where actual processing is defined for the

process is a refinement of the black and State Boxes.

The Project Information Management process is described in the following algorithm.

Clear Box Project Information Management (E3)

Stimuli
II: El Completed
S 1: Project Charter
52: Documents/Working Papers
S3: Informal Communication
S4: Project Review Minutes
S5: Resource Allocation
56: Master Project Schedule

Responses
RIO: Externally Submitted Question or Issue

Outer State
Tl: Project Document Files
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
T5: Project Management Files
T6: Unresolved Questions or Issues
T7: Pre-Release Software
T8: Failure Reports and Engineering Changes

Page 3-24 The Cleonroom Engineering Software Development Process 2/28/91

Section 3: A Box Stuctnre Modelfor Cleaxroom Engixeering SET-1R70

begin

do
con

if C5: Stimuli Received?
then

use ElO: Receive Stimuli
fi
if C6: Questions or Issues?

then
use El1: Submit a Question or Issue

fi

od

end Clear Box Project Information Management

The second level Clear Box breaks the Project Information Management process into a number of
conditions and processes, which represent a low-level view of the parts of the Project Information
Management process. General descriptions of each condition and process are given in the following
paragraphs, while a more detailed description of these and the lower level processes (along with more
detailed descriptions of conditions) are provided in Section 4.

C5 Stimuli Received?

This condition is true whenever an external stimuli is made available to the engineering team staff.

C6 Questions or Issues?

This condition is true whenever there is a question or an issue that cannot be resolved by a member
of the engineering team. In this case, the questions or issues are submitted to others within the engineering
team, or externally to others outside of the engineering team for resolution.

ElO Receive Stimufi

The process receives the completion of process El, the Project Charter, Documents/Working Papers,
Informal Communication, Project Review Minutes, Resource Allocation, and the Master Project Schedule
as stimuli, and returns the completion of E 10 as a response. This process merely receives and stores the
external stimuli.

Eli Submit a Question or Issue

The stimulus to this process is the completion of process El, responding with Externally Submitted
Questions or Issues. The transition is identical to the process name.

2/28/91 The Cleanroom Engineering Software Development Process Page 3-25

SET-IR70 Section 3: A Box Structures Modelfor Cleanroom Engineering

Graphically, the Project Information Management process appears in Figure 4.3.1.

3.9.3 software Solution Specification

The Black Box for Software Solution Specification (process E4) has two internal stimuli. One is a
signal which states that process El has been completed, and the other is a flag which holds the result of
condition C1. C1 is activated only when this is not the first time the Software Solution Specification process
is being invoked. Additionally, Software Solution Specification has three responses: a signal that the
process has been completed, R12 which is a decision to suspend the project, and R13 which are project
reports (including working papers from the state data, where the working papers are converted into project
reports). The transformation for E4 includes understanding the problem and solution domains, and writing
the software specifications. Additionally, the construction plan can be written or rewritten, depending on
how the process was invoked.

The State Box for Software Solution Specification is the same as the Black Box. This is the case
because no lower level state data requirements were found for the Software Solution Specification process.

The Clear Box for Software Solution Specification, where actual processing is defined for the
process, is a refinement of the Black and State Boxes.

The Software Solution Specification process is described in the following algorithm.

Clear Box Software Solution Specification (E4)

Stimuli
I1: E l Completed
12: C1 Software Not Ready for Release

Responses
12: E4 Completed
R12: Suspend Project Pending Management Decision
R13: Project Reports

Outer State
TI: Project Document Files
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
T5: Project Management Files
T6: Unresolved Questions or Issues
T7: Pre-Release Software
T8: Failure Reports and Engineering Changes

Page 3-26 The Cleanroom Engineering Software Development Process 2/28/91

Section 3: A Box Sructrwes Modelfor Cleanroom Englawering SET-1R70

begin
do

if (Cl not a stimulus)
then

con
use E12: Understand Problem Domain
use E13: Understand Solution Domain
use E14: Write Specifications

noc
use E15: Write Construction Plan

else
if C7: Continue with Project?

then
con

use E12: Understand Problem Domain
use E13: Understand Solution Domain
use E14: Write Specifications

noc
use E15: Write Construction Plan

else
Suspend project (R12)
Entire engineering team staff will archive state data for future use
Exit processfi

fi

od
end Clear Box Software Solution Specification

The second level Clear Box breaks the Software Solution Specification process into a number of
conditions and processes, which represent a low-level view of the parts of the Software Solution
Specification process. General descriptions of each condition and process are given in the following
paragraphs, while a more detailed description of these and the lower level processes (and more detailed
condition descriptions) are provided in Section 4.

C7 Review to Decide - Continue with Project?

This condition occurs when the Software Solution Specification process occurs more than once for
a project. It will evaluate to true whenever the manager determines that the project can be salvaged by
developing a new Construction Plan. It evaluates to false whenever the manager determines that the project
cannot be salvaged as is and should become the decision of management 2 "o what the next step is.

E12 Understand Problem Domain

In this process, the stimulus is the completion of process El and the response is the completion of
process E12. The transition is defined by the process name.

E13 Understand Solution Domain

2/28/91 The Cleanroom Engineering Software Development Process Page 3-27

SET-IR70 Section 3: A Box Structures Modelfor Cleanroom Engineering

With this process, the completion of process El is the stimulus again, with the completion of process
E13 being the response. This transition is evident from the process name.

E14 Write Specifications

This process receives the completion of process El as a stimulus and returns the completion of
process E14 as the response. In this process, the Specification team writes the first five volumes of the six-
volume specifications document. These volumes are: the Mission Volume, the User's Reference Manual
Volume, the Black Box Function Volume, the Black Box Function Verification Volume, and the Usage
Profile Volume.

ElS Write Construction Plan

The stimuli to this process are the completion of process E12, E13 and E14. The response is the
completion of process E15. The transition is simply the preparation of the final volume of the specifications
(the Construction Plan).

Graphically, the Software Solution Specification process appears in Figure 4.4.1.

3.9.4 Software Development and Certification

The Black Box for Software Development and Certification (process E5) has one internal stimulus.
It is a signal which states that process E4 has been completed. Additionally, Software Development and
Certification has two responses, one external and one internal: a signal (13) that the process has been
completed, and Ri 3 which are any project reports (which includes working papers from the state data, where
the working papers are converted into project reports). The transformation for E5 includes the development
and certification of the software increments.

The State Box for Software Development and Certification is the same as the Black Box. This is the
case because no lower level state data requirements were found for the Software Development and
Certification process. The Clear Box for Software Development and Certification, where actual processing
is defined for the process, is a refinement of the Black and State Boxes.

The Software Development and Certification process is described in the following algorithm.

Clear Box Software Development and Certification (ES)

Stimuli
13: E4 Completed

Responses
14: E5 Completed
R13: Project Reports

Page 3-28 The Cleanroom Engineering Software Development Process 2/28/9191

Sediox 3: A Box Structures Modelfor Cloanroon Eineering SET-WRO

Outer State
TI: Project Document Files
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
T5: Project Management Files
T6: Unresolved Questions or Issues
17: Pre-Release Software
T8: Failure Reports and Engineering Changes

begin

do
con

use E16: Increment Development (for increment 1)
use El6: Increment Development (for increment 2)

use E16: Increment Development (for increment i)

use E16: Increment Development (for increment n)
while C8: Next Increment in Construction Plan Ready?

do
use E17: Increment Certification
if C9: Final Increment?

then
Exit process

fl

od
noc

until
Completion Conditions achieved

od

end Clear Box Software Development and Certification

The second level Clear Box breaks the Software Development and Certification process into a
number of conditions and processes, which represent a low-level view of the parts of the Software
Development and Certification process. General descriptions of each condition and process are given in the
following paragraphs, while a more detailed description of these and the lower level processes (and more
detailed condition descriptions) are provided in Section 4.

C8 Next Increment in Construction Plan Ready?

This condition is true whenever the Development team has next increment (according to the order
dictated in the Construction Plan) ready for delivery to the Certification team.

2/28/91 The Cleanroom Engineering Software Development Process Page 3-29

SET-IR70 Section 3: A Box Structures Model for Cleanroom Ea•gineering

C9 Final Increment?

This condition is true whenever the final increment has been integrated into the software system and

has completed certification. Otherwise, development and certification will continue.

E16 Increment Development

This process receives the completion of process E4 as stimulus, and returns the code for an increment
as the response. The transition consists of developing an increment (E18), preparing certification tests for
an accumulated increment (E 19), updating the specifications (E20), and increasing the understanding of the
problem and solution domains as required (E21). These processes are described in detail in Section 4.

E17 Increment Certification

The stimulus to this process is the code for an increment, with the response being the completion of
process E 17. Increasing the understanding of the problem and solution domains (E2 1), building the system
with the new increment (E22), certifying the accumulated increment (E23), and correcting the code for the
accumulated increment (E24) compose the transitions for the process. These processes are described in
greater detail in Section 4.0.

Graphically, the Software Development and Certification process appears in Figure 4.5.1. Detailed

descriptions of all 25 processes appear in Section 4.

3.9.5 The Detailed Cleanroom Process

As previously stated, the Cleanroom Engineering process breaks down into a total of 25 processes.
All 25 processes have been described in the previous sections, but the relationship between all processes
needs to be described. That relationship is illustrated in Figure 3.9.5.1, where EO is implicit as the process
which contains the others. This figure adds no new information, but it has been found to be helpful when
preparing a realization of the model for a specific project.

3.10 Project Reviews

Project reviews are an integral part of software development projects and are handled by the model
no matter when they are scheduled. There are many alternative review schedules. The precise review
schedule for a project depends on many things such as the wishes of the project sponsor, the custom of the
organization, etc. The purpose of this section is to relate project reviews to the Cleanroom Engineering
project cycle and suggest a schedule of reviews that relates well to Cleanroom Engineering.

3.10.1 The Purpose Of Project Reviews

Project reviews are held so the project sponsor can appraise progress and determine if the project is
still heading in the desired direction. As a result of the review, the project sponsorcan take actions as follows:

1. Determine that the project is in serious trouble because it is heading in an undesired direction.
In this case, the project sponsor may suspend the project or suggest a significant mid-course
correction.

Dage 3-30 The Cleanroom Engineering Software Development Process 2/28/91

Secdon 3: A Box Stuctures Modelfor Clkanroom Engineering

State Data E2: Program Management
Ti1: Project Document Files C2: E7:
T2: Software Specification Files SeMaintain Projec

T3: Software Development Files fbi, Schedule

T4: Software.Certification Files M M

T5: Project Management Files
T6: Unresolved Questions or Issues
T7: Pre-Release Software W k Com ete/ Y ES:

T8: Failure Reports and Engineering Changes Review • Yes• Prepare for &
"heduled/ aor - Conduct Project

A roble Review 9,D&C

No

SI: Project Charter I •4:tatus YEs

S2: Documents! Sceue?__b rpr
Working Papers v S'bmitStatus

S3: Informal * Report MSD

Communication
S4: Project

Review
Minutes E4: Software Solution Specification E.

S5: Resource
Allocation E16: Increment Development

S6: Master E12:

Project Understand E16: Increment DevelopmentDProblem Domain E1 5Schedule s,D&C aWrite s E16: Increment Development

d oUnderstand aao..euUDevelop
"PSolution Domain Increment i

ME ,,I S ,D & C D o a n a R q DProject In vocati,,n E14 E19

C T Develop Cert. Plainr EgMS:,D&Cj [Write _41.& Tests forlIncr. -
-,Specifications 1,2, .,J C

-•Update
evewSpecifications

"P Nroject.• Suspend project [E2:Ices |

C l~and archive state i -- * Understanding of -
Idata for future useiPolm& oul

No ,SD& Domains as Required 5,D&C

(A)

V282/91 The Cleanroom Engineerin

I I
Figure 3.9.5.1

"B3: Project Information Management

CS: IElO:

Stimuli Receive Stimuli
Received?

N o

:J•
El11" Submit a Question or Issue

C6:110
SQuestion Yes Engineering Task, n Engineering Tasks

or Issues? to Submit/Resolve xte'na to Submit anIan Internal Quetio 1,'•.;'' i"External Question-
DQuestion or Issue or Issue $,lm&C

RbD&C

5: Software Development and Certification R2: Distribution Software
___R2: Maintenance Software

E17: Increment Certification R3: Final Specifications
R4: User Documentation
R5: Archived

E24: C13- Documentation
Correct Code Yes ontinue No
Increment 1..J ertlfncatlon9 R6: Project Review

D es C C Documents

Yes At Least R7: Project Schedule
OneFaiePre- R8: Management Metrics

Certification c R9: Project Status Reports

C E23:N o R10: Externally Submitted
Certify _Questions or Issues
Increment 1 ...J RI 1: Schedule Change

Request
Build System With 14: R12: Suspend Project

IncrementJ erticato R13: Project Reports

E21: Increase C (A)
Understanding of
Problem & Solutlon Yes 4 E6:
Domains as Requi d Prepare FinalProject Releases

$,D&C S,D&C

Yes C9YYsNo Final
Nx.tncrement? Yes

nrement I
onstructio Ysota
n Rea? Ready

Noo

VSoftiware Development Process Page 3-31

Section 3: A Box Structures Modelfor Cleanreon Engineering SET-1700

(This page intentionally left blank)

2/28/91 The Cleanroom Engineering Software Development Process Page 3-32

Section 3: A Box Structures Model for Cleanroom Engineering SET-1R70

2. Determine that the project is in serious trouble because the project development practices being
used are inadequate; or if they are adequate, they are being followed so poorly that the resulting
work will be substandard. In either case, the project sponsor may suspend the project or suggest
significant corrective action.

3. Determine that the project is proceeding in the desired direction, and the project performance
practices are adequate and are being followed so the work product will be of the expected quality.
In this case, the project sponsor is likely to continue with the project offering suggestions and/
or instructions to the project team to correct any deficiencies found in the product as a result of
the review.

Software project reviews typically focus on all aspects of the product from the highest to lowest detail
since project sponsors place very low reliance in contemporary heuristic, trial-and-error software development
practices. In other disciplines, reviews focus on the external aspects of the product and, in addition, take a
sample of the internal details to determine if proper project performance practices are being followed. If the
sample indicates sound engineering practices are being followed, the sponsor has confidence that the entire
project will meet its quality goals.

3.10.2 Project Reviews and Cleanroom Engineering

The model of software development practices presented in this document is compatible with any
review schedule the project sponsor desires. A review schedule that corresponds to critical points in the
project cycle is more productive than a review schedule that is organized to the calendar and thus misses
critical project points. When a software development project is organized as suggested by this model, any
schedule is feasible and will cause minimal impact on project performance.

It is envisioned that the development agreement will specify the reviews and the content of the
reviews. In this way both the sponsor and the developer know what to expect and how to prepare. There
are three stages to a review: the preparatory stage, the review itself and the review follow-up. In this model,
the following acts are envisioned in each of the three stages.

Preparing For A Review. Typically, the review plan as contained in the development agreement will
specify the items (and very often the format for the items) that the reviewers want to examine in each review.
In this model of software development, it is envisioned that review documents will be prepared directly from
state data files. Review documents should not contain any data or information that is not in the state data.
In fact, the review documents should be prepared from the state data by anyone knowledgeable in software
engineering practices. An alternative that eliminates the need to prepare special review documents is to give
the reviewers direct, read only, access to the state data files. In any event, all the material required for the
review team is prepared and given to the review team in advance for study. Typically, at the review the
reviewers will want an introductory presentation to guide them through the materials and the current state
of the product. This presentation will not be part of the state data prior to the review, but it must be prepared
from the state data materials.

Conducting The Review. The reviewers will be in control. The desired presentation should be
delivered. The reviewers should be given the time they desire to read and study material before the review.
All their questions during the review should be answered as clearly as possible using material contained in

2128/91 The Cleanroom Engineering Software Development Process Page 3-33

SET-IR70 Secdton 3: A Box Structures Modelfor Cleanroom Engineering

the state data. Reviewers will typically focus on several issues by trying to answer two classes of questions:

1. Will the product as designed provide satisfaction to its users assuming it is implemented in
accordance with the design? Is it possible to design a product that will provide more satisfaction
while meeting other economic constraints?

2. Will the engineering practices as defined permit engineers to construct a product that is in
accordance with its design? Are the defined engineering practices being followed?

The first class of questions is answered by examining the specification and the verification argument
contained in the specification. The verification argument should be evaluated to determine if it adequately
shows that if software existed that meets the specifications, the software will complete the mission defined
for the software.

The second class of questions is answered by examining the detailed engineering practices and then
conducting a random sample to determine how well the practices are being followed. In the case of
Cleanroom, the best things to sample are th: verification arguments and how the engineering teams are
performing against the completion conditions defined for each process. Completion conditions are
introduced in detail in Section 4.0. If the review team is satisfied that the engineering team is only proceeding
from one process to the next when the completion conditions are satisfied and that all verification arguments
are correct, the review team can then conclude the Cleanroom processes are being followed. The other
element review teams should carefully examine are the results of software certification tests. These tests are
measurements of the underlying process. If the software certification tests show few failures and indicate
a high MTTF, the review team can conclude that the sample of tests conducted indicates high quality. Since
these tests were drawn at random from the universe of all possible tests and they indicate a high M'TF, the
conclusion is that the development process is in a state of intellectual control. As a result it can be concluded
that the software, as it is being produced, will exhibit similar quality for its full range of operations.

The Review Follow Up. The review team puts its conclusions in writing in a formal report. The report
includes recommendations in the form of action items. The recommendations take two forms. First,
recommendations about the process. Second, recommendations about the product. The sponsor will accept
some recommendations and reject others. These accepted recommendations are modifications to the project
charter which from that point forward must be included in the product or they are recommendations to modify
the process which must be accounted for as part of the completion conditions for the appropriate process.

3.10.3 A Feasible Review Schedule For Cleanroom Projects

There are many feasible review schedules for Cleanroom projects. The actual project review
schedule will be specified by agreement between the project sponsor and the project developer. The
following review schedule is a useful review schedule since it fits into the Cleanroom project cycle. In this
recommendation, there are four normal reviews and one exceptional review. The reviews are:

Software Requirements Review. This review should be held as soon as possible after the software
project is initiated to determine if there is sufficient understanding of the mission the software is to
perform. The software team must participate in this review so they can agree that sufficient
understanding does exist for them to proceed. A comment draft of the mission volume of the
specifications should be available.

Page 3.34 The Cleanroom Engineering Software Development Process 2/28/91 9

Section 3: A Box Structures Model for Cleanroom Engineering SET-1R70

Preliminary Design Review. This review should be held at the completion of the Software Solution
Specification Process (E4) or Write Specifications process (E14) to insure that if the software is
developed as specified, it will be able to fulfill the mission that has been assigned to the software.

Critical Design Review. This review should be held at the completion of the Increment Development
Process (E 16) for each increment to insure the software as designed meets the specifications and that
the certification tests are adequate.

Software Acceptance Review. This review should be held at the completion of certification of the
last increment prior to Preparing Final Project Releases (E6) to insure the sponsor is satisfied with
the software as developed.

Increment Failure Review. This review should be held whenever the Certification team determines
that an increment as implemented is too failure-laden to continue certification. The purpose of this
review is to investigate the failure and recommend corrective action.

3.11 Model Comparison

The purpose of this section is to answer such questions as: How does the Cleanroom Engineering
Project Cycle differ from other project cycles? How is it the same? What are the advantages of this modeling
approach over other modeling approaches?

The first point to make is that all models of the software development process are similar to the extent
that they all deal with how to manage a complex process where the principal processing components are
highly trained professionals. The models all need to deal with overhead functions such as status reports,
project reviews, project scheduling, etc. At the working level they all need to deal with specification
development, software design and implementation and software certification. All models need to deal with
process interaction by specifying the control flow among processes. At the control level all models must deal
with determining when a process s complete and when the software is complete. The software is complete
where it will perform its assigned mission with satisfactory reliability. All models must deal with how to
account for work-in-process as the engineers move from a mission statement for the software to the actual
software.

Section 2 illustrates much of what makes the Cleanroom environment different from the environment
which is associated with conventional trial-and-error software development practices. The Cleanroom
practices are used at the working levels by the engineers who are actually doing the hard work of specifying,
developing and certifying. Therefore, the Cleanroom practices are used in the leaf nodes of the process
hierarchy. These are the 12 processes that are used by the three control processes: E4: Software Solution
Specification, E16: Increment Development and E17: Increment Certification. These three control
processes were developed in this section. The Engineering Tasks for performing these 12 processes, which
are the 12 processes directly effected by Cleanroom Engineering practices, are defined in Section 4.

Section 4 also defines the engineering tasks for all the other 13 processes. These 13 processes are
also affected by Cleanroom. The big advantage Cleanroom Engineering practices offer managers is that they
provide them with the facilities required to manage projects since the project is performed in a state of
intellectual control. What makes a software project difficult to manage is that the development effort is not

2/28/91 The Cleanroom Engineering Software Development Process Page 3-35

SET-IR70 Section 3: A Box Structures Modelfor Cleanroom Engineering

under intellectual control. This same condition also makes it very difficult, if not impossible, to develop a
simple meaningful model of the software development process. Therefore, with Cleanroom Engineering,
since the processes where the hard engineering work is done are under intellectual control, the processes that
control the work flow and the provide the services to support the hard engineering work can be specified in
a simple-to-understand-and-use form.

What makes this model of the software development process different than other models are the
Cleanroom methods. Cleanroom makes it possible to specify clear engineering tasks for the hard engineering
processes. Cleanroom makes the management task possible since it eases the modeling requirements for the
control flow and management tasks. Cleanroom makes it possible to specify predicates (True/False
conditions) to determine when a process is complete, which eases both the management and modeling effort.

Another important feature of the model is the treatment of in-process work as state data. It is, in fact,
state data that represents the current state of the understanding and the transformation of the stimuli to the
desired responses. The treatment of this information in the model as state data simplifies the model since
many data flows are not required. It is not necessary to invent internal products solely for the purpose of
accounting for work or to pass data. Treating in-process work as state data on a real project has these same
advantages since it models how engineers really want to work. In addition, by treating in-process work as
state data, the in-process work is moved into public view where it belongs. This is in contrast to the current
situation where many in-process work is the private preserve of individual engineers. Another advantage
of this relationship is that it does not require the engineers to keep two sets of books - one that they use to
get the information they need, and one that contains the defined intermediate products required to satisfy
project monitors and get paid.

Below, each of the 25 processes are enumerated along with comments about how they relate to other
modeling efforts.

EO: Cleanroom
Defines the top level control process so process differences are largely invisible. The
differences that are visible include: (1) enumeration of all stimuli and responses, (2) the
central role of the state data, and (3) since all results are maintained as state data, the final
process is to prepare the final project releases from the state data.

El: Project Invocation
All models provide this function either explicitly or implicitly.

E2: Program Management and used processes
E7: Maintain Project Schedule
E8: Prepare for and Conduct Project Review
E9: Prepare and Submit Status Report

All models account for these activities in some way.

E3: Project Information Management and used processes
ElO: Receive Stimuli
Ell: Submit a Question or Issue

Al' models account for these activities in some way.

Page 3-36 The Cleanroom Engineering Software Development Process 2/28/91 U

Section 3: A Box Structures Modelfor Cleanroom Engineering SET-IR70

E4: Software Solution Specification
This is the control process for preparing the specification and the process of suspending the
project. What is different about this control structure is the leaf processes which are being
controlled and since the leaf nodes are different, the control structure may be different.

ES: Software Development and Certification and used processes
E16: Increment Development
E17: Increment Certification

These are control structures for developing and certifying the software. What is different
about this control structure is the leaf processes which are being controlled; and since the leaf
nodes are different, the control structure may be different.

E12: Understand Problem Domain
E13: Understand Solution Domain

These two engineering processes contain the engineering activities required to perform the
bottom-up thinking that is required to support specification development. The exact nature
of the tasks that need to be performed is highly dependent on the project and what is known
when the project was initiated. Many models account for this bottom-up thinking in some
way and others ignore the difficulty so there is not a clear separation between bottom-up
thinking and top-down design. Also models may not make a clear distinction between
bottom-up thinking designed to support problem and solution domain understanding.

E14: Write Specifications
All models account for writing specifications. With Cleanroom there is an instance on clear,
complete and formal specifications before top-down development is initiated. The format of
a Cleanroom specification is different. Therefore, the engineering tasks to produce the
specification are different. With Cleanroom, there is an instance that the specifications must
be verified, to insure that if the software is developed and certified as meeting the
specifications, it will perform the mission assigned to the software. This is because
Cleanroom clearly separates the easier problem of developing software from the more
difficult problem of inventing specifications. This separation is required so that the software,
which is a rule, can be verified and certified to the function which is defined in the
specifications.

El5: Write Construction Plan
All models somehow prepare a plan for constructing software in increments. The Cleanroom
requirement for user executability for each accumulating set of increments is a necessary
condition to utilize usage testing at each certification step. This requirement causes this
process to be different.

E18: Develop Increment i
All models account for software development one or more processes. The Cleanroom
model is much simpler in this aspect since the Cleanroom technologies enable engineers to
develop and verify software under intellectual control. Therefore, the engineering tasks used
to perform this process reflect the use of these technologies.

2/28/91 The Cleanroom Engineering Software Development Process Page 3-37

SET-IR70 Section 3: A Box Sructures Modelfor Cleanroom Engineering

E19: Develop Certification Tests for Increments l...j
Cleanroomi relies on usage testing to certify software. Most conventional software development
practices and hence models rely on some form of coverage testing. Thus the engineering tasks
that define this process are different.

E20: Update Specifications
All models in some way account for the need to maintain specifications current. Cleanroom
requires that the Specifications always be current and that the specifications be decomposed
to support incremental construction, so this process is difficult.

E21: Increase Understanding of Problem and Solution Domains as Required
All model account for continuing bottom-up exploration in some way. Continued bottom-
up exploration is vital to permit developers to explore ahead of the design to help make current

design trades.

E22: Build System With Increment j
This process is different since conventional practice assumes systems are built as a by-
product of the development effort. With Cleanroom there is clear separation between
development ax-d certification.

E23: Certify Increment 1...j
This process is different since in Cleanroom the software is built in a series of accumulating
increments, all under statistical quality control. This process is where the statistical quality
control takes place.

E24: Correct Code for Increments 1...j
This process is different with Cleanroom since failures are observed by the Certification team
and formally passed back to the Development team for correction. This converts failure
correction from a "private backroom" process into a "public process" with high visibility. In
addition, when the Development team makes a correction, it must trace the failure to its
source and correct the entire design. In soroe cases, this means going back to the Box
Structure design. This requirement reduces the possibility that a fix to a failure will result in

the condition of local correctness and global incorrectness. With Cleanroom, developers
have many less failures to remedy. This high visibility makes it easier for the development
organization to lc-m to prevent future failures.

From the above description, it is apparent that the differences are primarily in the leaf processes
where the Cleanroom technologies are used to establish intellectual control over the design process. This,
in turn, permits the control processes to become simpler since they are being used to control processes that
are understood and are under intellectual control.

From this modeling effort, it is reasonable to draw the foutowing conclusions.

1. It is possible to fit the Cleanroom technologies into a total software development process.

Page 3-38 The Cleanroom Engineering Software Development Process 2/28/91 3

Section 3: A Box Structures Modelfor Cleanroom Engineering SET-IR70

2. The model of the software development process which includes Cleanroom technologies is
simpler than process models that attempt to depict traditional trial-and-error software development
practices.

3.12 Using The Process Model

This process model is a description of the Cleanroom process, not a prescription of how to complete
the Cleanroom process in all situations. The process model is not used directly to allocate effort to and then
control the performance of a project. The process of using the model to plan for, to schedule and then control
a project requires four steps as follows:

1. The process model is used to define a list of all the processes required for the project of interest
- the project processes. To prepare the list requires knowledge of the specific project. Typical
project details include the number of increments, the number of reviews, when they are to occur,
etc.

2. The process model is used to determine the precedence relationships between the project
processes. The result is a precedence diagram, commonly called a PERT chart. Given project
knowledge, it is possible to assign the effort required to perform each of the project processes.
Therefore, it is possible to determine the critical path through the precedence diagram. The result
is the minimum project duration.

3. Then, given resources to perform the project, it is possible to allocate the project processes to the
resources and develop a schedule. There are many possible schedules that can be used to perform
a project. Project managers try to find the best schedule. "Best" is defined according to many
factors including risk minimization.

4. Then, given a schedule, the project manager makes real-time observations and, as a result,
modifies the schedule to account for difficulties or to take advantage of opportunities. Examples
include:

A process is scheduled to begin and, for any number of reasons, it is determined the process
should not start as scheduled. As a result, the project manager does not issue the instructions
to invoke the process.

A process is in progress and either because of events observed in the peiformance of that
process or in some other process the manager decides to interrupt performing that task.

2J28/91 The Cleanroom Engineering Software Development Process Page 3-39

SET-IR70 Section 3: A Box Structures Modelfor Cleanroom Engineering

Page 3-40 The Cleanroom Engineering Software Development Process 2/28/91

SET-1R70

Section 4

Process Basis for Cleanroom Engineering

Organization

The purpose of this section is to provide a reference base for users of the model. A manager will be
able to use this section as a basis for guiding an engineering staff that is developing software using Cleanroom
Engineering and/or tailoring the process to meet specific project/organizational requirements. This section
is not designed to teach professionals how each Cleanroom engineering task should be performed. A
prescriptive model for Cleanroom is dependent on the organization, environment, project, etc. The
descriptive model presented in the subsequent pages is also not immutable. It will change and expand, as
engineering tasks become clearer and completion conditions become more specific.

The twenty-five processes which make up the Cleanroom Engineering process model (numbered EO
through E24) are defined individually in the subsequent sections. Each process is described in the order it
was referred to in Section 3. Each section starts on a new page to make it easier to support the use of the
process model on individual projects. For each process, a consistent notation and structure are used and are
defined as follows:

Process Summary A general description of the process is presented in this section.

Outer State This section lists state data that is accessible by the process. State data that is in bold print is
actually in the specific process. State data in plain text is not used in the specific process, although it may
be used in lower level processes of the original process.

Process Illustration The process illustration presents the control flow for the process in a graphical format.

Process Completed By This section details the people responsible for completing this process. The
responsible people may Ne the engineering team manager, Specification team, Development team or
Certification team. On the figures, all processes and conditions have the people that complete the process
or condition written in outline print.

Previous Process The Cleanroom Engineering process that occurred previous to this process is listed here.

Pre-Conditions Any conditions that appear between this process and the previous one are listed, along with
the cases that lead to this process.

Subsequent Process The process that will occur immediately after this process is listed here.

Stimuli The stimuli for a box can be external stimuli, control messages, process messages or parameters
(such as code).

Responses The responses from a box can be external responses or process messages or parameters (internal
responses).

State Data Usage Use of and modification to state data is listed in this section.

2/28/91 The Cleanroom Engineering Software Development Process Page 4-1

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

Process Description The steps that one must follow to complete a process are given in this section. These
steps are either lower level processes or engineering tasks. Additionally, conditions that appear in the box
are also explained in greater detail.

Measurement Data Generated The categories of data for measurement that are generated in this process
are listed in this section.

Completion Conditions To exit any process, the completion conditions for the process must be met. All
of the completion conditions must be answered affirmatively to exit the process. Otherwise the process
cannot be considered complete. Forms containing a listing of the completion conditions are included in
Appendix A for easy reproduction and use by engineering teams.

Keyword References Selected words that deserve additional explanation are listed in this section along with
references to a more detailed description of the term or to the description of the process defined by the term.

In this section, each sub-section is started on a new page so it is easy for teams or managers to reproduce a
section or sections to support work on a specific process.

Page 4-2 The Cleanroon Engineering Software Development Process 2V28/91 U

Section 4: Process Basis for Cleanroom Engineering SET.IR7O

Section 4.0 - Process E0 - Cleanroom

Process Summary The Cleanroom process clear box is the most general description of Cleanroom.
Specifically, the project is invoked, then the program and externally received information are managed, a
solution is specified and software is constructed and certified. Finally, the final project releases are put
together. The process is illustrated in Figure 4.0.1, and is also described in greater detail below.

Figure 4.0.1 Cleanroom Process

EO: Cleanroom

Outer State TI: Project Document Files
"1T2: Software Specification Files
"I3: Software Development Files
T4: Software Certification Files.
T5: Project Management Files
T6: Unresolved Questions or Issues
T7: Pre-Release Software RI: Distribution
"1"8: Failure Reports and Engineering Changes Software

I A R2: Maintenance
Software

R3: Final
S1: Project Charter R4: Specifications
S2: Documents/ R4: User

Working Papers E2: Documentation
S3: Informal R5: Archived

Communication Management Documentation
S4: Project Review El: M,S,D&C R6: Project Review

Minutes Project Documents
S5: Resource Invocation R7: Project

Allocation ,Schedule
astio CE3: Project R8: Management

S& Master Project Information Metrics
Schedule Management R9: Project Status

SD&C Reports
RIO: Externally

Submitted
NNo Yes Questions or

Ready Issues
or Release RI 1: Schedule

M ,Change
IT Request

E4: E5: : RI2: Suspend
Software Software r Project
Solution -I0 Development Project Releases R13: Project Reports
Specification and Certification S,D&C

M,S,D&C S,D&C

2/28/91 The Cleanroom Engineering Software Development Process Page 4-3

SET-IR70 Sectiox 4: Process Basis for Ceanroom Engineeriag

Process Completed By Engineering team manager and Specification, Development and Certification
teams.

Previous Process None - Process not started

Pre-condition None

Subsequent Processes None - Process completed

Stimuli Project Charter (S 1), Documents/Working Papers (S2), Informal Communications (S3), Project
Review Minutes (S4), Resource Allocation (55), Master Project Schedule (S6).

Responses Distribution Software (RI), Maintenance Software (R2), Final Specifications (R3), User
Documentation (R4), Archived Documentation (R5), Project Review Documents (R6), Project Schedule
(R7), Management Metrics (R8), Project Status Reports (R9), Externally Submitted Questions or Issues
(RIO), Schedule Change Request (RI 1), Suspend Project (R12), Project Reports (R13).

State Data Usage This process does not directly affect state data, although its sub-processes do. The effect
of the sub-processes on state data will be detailed when the sub-processes are described.

Process Description Process EO: Cleanroom is performed by following the algorithm below until the
completion conditions are achieved:

use El: Project Invocation
con

use E2: Program Management
use E3: Project Information Management
do

do
use E4: Software Solution Specification
use E5: Software Development and Certification

until
CI: Software Ready for Release?

od
use E6: Prepare Final Project Releases

od
noc

C1: Software Ready for Release is a decision made by the engineering team manager. When the manager
decides, as a result of available information (reliability results, code, etc.) that the project is ready, the
preparation of the final product releases can begin. If the manager decides that the project is not ready, then
the Construction Plan will be redone and Development and Certification will recommence.

Page 4"4 The Cleanroom Engieering Software Derelopment Process 2128/91 U

Section 4: Process Basis5for Cleanroom Engineering SET-Rt7O

E2: Program Management
E3: Project Information Management
E4: Software Solution Specification
E5: Software Development and Certification
are discussed in Sections 4.2, 4.3, 4.4 and 4.5, respectively.

Measurement Data Generated Effort

Completion Conditions Each of the following questions must be answered affirmatively in order to
complete this process.

1. Have all necessary measurements been made?
2. Have all completion conditions for all six sub-processes (El, E2, E3, E4, E5 and E6) been

achieved?
3. Have all information to be preserved been placed in the correct state data?

Keyword References None

2/28/91 The Cleanroom Engineering Software Development Process Page 4-5

SET-IR70 Sectio 4: Process Basis for Cleanrsom Engineering

Page 4. The Cleanroom Engineering Software Development Process 2/28/91 L

Secdon 4: Process Rauisfor Cleanroom Engineering SET-1R70

Section 4.1 - Process El - Project Invocation

Process Summary The Project Invocation process organizes and allocates the initial staff and resources for
the project. The software development plan is created, and the initial project schedule is defined.
Additionally, the initial Project Charter is determined. Finally, any questions or issues which arise that
cannot be solved by the engineering team are externally submitted to be resolved. The process is illustrated
in Figure 4.1.1, and is also described in greater detail below.

Figure 4.1.1 Project Invocation Process

Outer State TI: Project Document Files

T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
T5: Project Management Files
T6: Unresolved Questions or Issues
TT: Pre-Release Software
T8: Failure Reports and Engineering Changes

I A.

I I

I I

El: Project Invocation

SI: Project Charter Engineering Tasks] omp-eti YES
S5: Resource A* for Process El o tio e R10: Extenally Submitted

Allocation Conditions Questions or Issues
56: Master Project I: El Complete

Schedule

Process Completed By Engineering team manager and Specification, Development and Certification
teams.

Previous Process Cleanroom (EO)

Pre-condition None

Subsequent Processes Program Management (E2), Project Information Management (E3), Software
Solution Specification (E4).

2/28/91 The Cleanroom Engineering Software Development Process Page 4-7

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

Stimuli Project Charter (S 1), Resource Allocation (S5), Master Project Schedule (S6).

Responses El Complete (I1), Externally Submitted Questions or Issues (RiO).

State Data Usage This process results in material appearing in the Project Management Files (the Project
Charter and the initial project schedule), and Unresolved Questions and Issues (initial questions or issues
pertaining to the project). Additionally, the software development plan is the first item to appear in the
Project Document Files as a working paper.

Process Description Complete (achieve the completion conditions for) the following engineering tasks
during the Project Invocation process. They can be performed concurrently.

1. Allocate and organize the initial staff for the project.
2. Allocate and organize other initial resources for the project.
3. Agree on the initial Project Charter.
4. Create the software development plan, a working paper which outlines the software engineering

procedures to be used for the project. This document or a prior software development plan can
serve as a basis for this plan. The plan needs to be accepted by management. This plan must be
accepted by the engineering teams.

5. Develop the initial project schedule. This includes integration of the Master Project Schedule and
initial staff, resource and task allocations for the project.

6. Ask any questions that come up, first attempting to resolve them internally and, if unsuccessful,
submitting them externally.

Measurement Data Generated Effort, State Data Produced

Completion Conditions Each of the following questions must be answered affirmatively in order to
complete this process.

1. Have all initial staff members been put on a team?
2. Has the initial Project Charter been accepted?
3. Has the software development plan been created and accepted?
4. Has the initial project schedule been creaied?
5. Have initial task assignments been given?
6. Have all additions to, deletions from and modifications of the state data been completed?
7. Have all necessary measures been gathered?
8. Have all necessary responses been submitted?
9. Have all pertinent reviews for this process been completed?

10. Have all action items generated during reviews that pertain to this process been completed?
11. Have all information to be preserved been placed in the correct state data?

Keyword References
Review - Section 4.8
Unresolved Questions or Issues - Section 5.6

Page 4-8 The Cleanroom Engineering Software Development Process 2128191

Section 4: Process Basis for Cleanroom Engineering SET-IR7O

Section 4.2 - Process E2 - Program Management

Process Summary The Program Management process centralizes interaction with persons outside the
engineering staff. During this process, the project schedule is maintained, requests to change the Master
Project schedule are made, reviews are planned and conducted, and status reports are submitted. The process
is illustrated in Figure 4.2.1, and is also described in greater detail below.

Figure 4.2.1 Program Management Process

Outer State
TI: Project Document Files
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
T5: Project Management Files
T6: Unresolved Questions or Issues
T7: Pre-Release Software
TS: Failure Reports and Engineering Changes

E2: Program Management
R6: Project

Review
Documents

o ompleti yes R7: Project
Conditions Schedule

chieve R9: Project
Status

7No fes'Reports
C2:E7: RI 1: Schedule

ta Changehedules t Yes Maitai prhangein Proj Request
Modird Schedule

II: E1 Complete W kCo.n te/ ES:l
Review Y Prepare for &

hedul or Conduct Project
oble . Review S &

S~No

Status Yes Prepar9 & Submit
"L :Scheduled? 0-ý Status Report

5,i EDC MSID~&C

/ No n

2/28/91 The Cleanroom Engineering Software Development Process Page 4-9

SET-IR70 Section 4: Process Basis for Cleanroom Engiaeering

Process Completed By Engineering team manager and Specification, Development and Certification
teams.

Previous Process Project Invocation (El)

Pre-condition None

Subsequent Process None - Project completed

Stimuli El Completed (I1)

Responses Project Review Documents (R6), Project Schedule (R7), Project Status Reports (R9), Schedule
Change Request (R 11)

State Data Usage This process does not directly affect state data, although its sub-processes do. The effect
of the sub-processes on state data will be detailed when the sub-processes are described.

Process Description Process E2: Program Management is performed by following the algorithtr below:

do
con

if C2: Schedules to be Modified/Published?
then

use E7: Maintain Project Schedule
fi
if C3: Work Complete/Review Scheduled/Major Problem?

then
use E8: Prepare for & Conduct Project Review

fi
if C4: Status Scheduled?

then
use E9: Prepare & Submit Status Report

fi
noc

until
Completion Conditions achieved

od

C2: Schedules to be Modified/Published is a decision that is made by the project manager. The engineering
team manager may receive a new Master Project Schedule, determine that the project schedule needs to be
changed, or the calendar may reach a time when the project schedule needs to be published (due to
information in the Project Charter or Master Project Schedule). These are changes to the external schedule.
The engineering team manager may also decide that a task assignment needs to be added, modified or deleted.
These are changes to the internal schedule. If any of these cases occur, then process E7: Maintain Project
Schedule is invoked.

Page 4-10 The Cleanroom Engineering Software Development Process 2/28/91 9

Section 4: Process Basis for Cleanroom Engineering SET.-R70

C3: Work Complete/Review Scheduled/Major Problem is a decision made by the engineering team and
management. The engineering team may decide that a certain amount of work is completed to warrant an
external review. The team may also determine that there is a major problem that they cannot solve and that
needs to be addressed by management. Finally, a review schedule may be part of the Master Project Schedule
or a review may be called by management, for which the project team must prepare. If any of these cases
are true, then process E8: Prepare for & Conduct Project Review is invoked.

C4: Status Scheduled is based on a schedule determined by the organization, or appears as a part of the
Project Charter. If a status report is scheduled, then it must be submitted, which means process E9: Prepare
and Submit Status Report is invoked.

E7: Maintain Project Schedule
E8: Prepare For and Conduct Review
E9: Prepare and Submit Project Status Reports
E9: Prepare and Submit Status Reports
are discussed in Sections 4.2.7, 4.2.8 and 4.2.9, respectively

Measurement Data Generated Effort

Completion Conditions Each of the following questions must be answered affirmatively in order to
complete this process.

1. Have all necessary measures been gathered?
2. Have all completion conditions for all three subprocesses (E7, E8 and E9) been achieved?
3. Is the project completed?

Keyword References None

2/28/91 The Cleanroom Engineering Software Development Process Page 4-11

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

Page 4-12 The Cleanroom Engineering Software Development Process 2/28/91 U

Section 4: Process Basisfor Cleanroom Engineering SET-IR70

Section 4.3 - Process E3 - Project Information Management

Process Summary The Project Information Management process is concerned with the receipt and filing
of all externally received stimuli. The stimuli are filed in a manner which makes the information easily
accessible by the entire staff. Additionally, questions or issues which are to be submitted internally or
externally or are to be resolvei internally are organized in this process, since this is where the responses to
those questions will appear. The process is illustrated in Figure 4.3. 1, and is also described in greater detail
below.

Figure 4.3.1 Project Information Management Process

Outer State

TI: Project Document Files
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
T5: Project Management Files
T6: Unresolved Questions or Issues
T7: Pre-Release Software
TS: Failure Reports and Engineering Changes

I I

E3: Project Information Management

II: El Complete
SI: Project Charter CE10:
S2: Documents/ Stimuli Receive Stimuli

Working Papers Received?
S3: Informal - - §&•,/,

Communication D&
S4: Project Review MNoinueS5: Resource ompletio YesAllocation Conditions RIO: Externally
S6: Master Project Submitted

Schedule No ornssues

fuesion es ubmi a Questionor Issues? or Issue

2/28/91 The Cleanroom Engineering Software Development Process Page 4-13

SET-IR70 Section 4: Process Basis for Cleanmoom Engineering

Process Completed By Specification, Development and Certification teams.

Previous Process Project Invocation (El)

Pre-condition None

Subsequent Process None - Project completed

Stimuli El Complete (II), Project Charter (S 1), Documents/Working Papers (S2), Informal Communication
(S3), Project Review Minutes (54), Resource Allocation (S5), Master Project Schedule (S6).

Responses Externally Submitted Questions or Issues (RIO)

State Data Changes This process does not directly affect state data, although its sub-processes do. The

effect of the sub-processes on state data will be detailed when the sub-processes are described.

Process Description Process E3: Project Information Management is performed by following the
algorithm:

do
con

if C5: Stimuli Received?
then

use ElO: Receive Stimuli
fi
if C6: Questions or Issues?

then
use E 11: Submit a Question or Issue

fi

noc
until

Completion Conditions achieved
od

CS: Stimuli Received is true when any external stimuli is given to the engineering team. When it is true,
process ElO: Receive Stimuli is invoked.

C6: Questions or Issues is true when any project staff member (Specification, Development or Certification)
determines, at any time during the project, that there is a question or issue that the project staff member cannot
resolve. When C6 is true, process El 1: Submit a Question or Issue is invoked.

ElO: Receive Stimuli
Eli: Submit a Question or Issue
are described in Sections 4.10 and 4.11, respectively.

Measurement Date Generated Effort

Page 4-14 The Cleanroor Engineering Software Development Process 2/28/91

Section 4: Process Basis for Cleanroom Engineering SET-IR7O

Completion Conditions Each of the following questions must be answered affirmatively in order to
complete this process.

1. Have all necessary measures been gathered?
2. Have all completion conditions for both subprocesses (ElO and Eli) been achieved?
3. Is the project completed?

Keyword References None

2/28/91 The Cleanroom Engineering Software Development Process Page 4-15

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

Page 4-16 The Cleanroom Engineering Sofware Development Process 2/28/91

Sectiox 4: Process Basis for Cleanroom Engineering SET-1R70

Section 4.4 - Process E4 - Software Solution Specification

Process Summary The Software Solution Specification process focuses on understanding the problem to
be solved and specifying a solution. In addition to understanding the problem domain, the engineering staff
must also understand the solution domain, while the Specification team must write the Specifications and
the Construction Plan. Additionally, if a project must be re-planned or re-done, the decision to suspend the
project is also made in this process. The process is illustrated in Figure 4.4.1, and is also described in greater
detail below.

Figure 4.4.1 Software Solution Specification Process

Outer State Ti: Project Document Files
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
TS: Project Management Files
T6: Unresolved Questions or Issues
T7: Pre-Release Software
T8: Failure Reports and Engineering Changes

I I

E4: Software Solution Specification

E12:
Understand
Problem Domain E-S:

5S,&C Write

El3:__ -- l_ Construction Plan
E13: 1
Understand
"Solution Domain

11: El Complete- E14:

1 o Specifications
N ompletio es 13: E4 Complete

Conditions R 13: Project Reports

12: Software decide - Yes
Not Ready o wit
for Release Project? Suspend project

9 9 C and archive state
data for future use R12: Suspend Project

No M1 ,•, c

2V28/91 The Cleanroom Engineering Software Development Process Page 4-17

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

Process Completed By Engineering team manager and Specification, Development and Certification
teams.

Previous Process Project Invocation (E 1) or Software Development and Certification (E5)

Pre-condition None for first iteration, subsequent iterations have condition Software Ready for Release?
(C1) = FALSE

Subsequent Process Software Development and Certification (E5)

Stimuli El Completed (I1), C1 False (12)

Responses E4 Completed (13), Suspend Project (R12), Project Reports (R13).

State Data Usage Since the review to decide whether to continue the project and the process of suspending
the process and archiving state data are both a part of this process, all of the state data will be used as reference
material for those tasks.

Process Description The following algorithm performs the E4: Solution Specification process:

do
if (C I not a stimulus)

then
con

use E12: Understand Problem Domain
use E13: Understand Solution Domain
use E14: Write Specifications

noc
use E15: Write Construction Plan

else
if C7: Review to decide - Continue with Project

then
con

use E12: Understand Problem Domain
use E13: Understand Solution Domain
use E14: Write Specifications

noc
use E15: Write Construction Plan

else
Suspend Project (R12)
Entire engineering team staff will archive state data for future use
Exit process

fi

until
Completion Conditions achieved

od

Page 4-18 The Cleanroom Engineering Software Development Process 2/28/91

Section 4: Process Basis for Cleanroom Engineering SET-MR70

C7: Review to decide - Continue with Project is an assessment of the status of the project. This is a major
review that only occurs when the engineering team manager or upper management determine that the code
fulfills the specification, but the specification is incorrect. At this review, the decision is made whether the
project should be suspended, and the material should be archived for future use, or if the project should
continue (by writing a new specifications document and continuing from there).

E12: Understand Problem Domain
E13: Understand Solution Domain
E14: Write Specifications
E15: Write Construction Plan
are described in Sections 4.12, 4.13, 4.14 and 4.15, respectively.

Measurement Data Generated Effort

Completion Conditions Each of the following questions must be answered affirmatively in order to
complete this process.

1. Have all necessary measures been gathered?
2. Have the completion conditions of all four sub-processes (E12, E13, E14, and E15) been

achieved?
3. If the project was suspended, has all material been archived in a manner that will be useful to

individuals who will need the material in the future?

Keyword References None

2/28/91 The Cleanroom Engineering Software Development Process Page 4-19

SET-IR70 Secdon 4: Process Basis for Cleanroom E..-meering

Page 4-20 The Cleanroom Engineering Software Devlopmnem Process 2/28/91

Secton 4: Process Basis for Cleanreom Engineering SET-1R70

Section 4.5 - Process E5 - Software Development and Certification

Process Summary The Software Development and Certification process implements the solution which
is documented in the Specifications. The sub-processes include incremental development and certification.
The process is illustrated in Figure 4.5.1, and is also described in greater detail below.

Figure 4.5.1 Software Development and Certification Process

Outer State
TI: Project Document Files

"2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
T5: Project Management Files
T6: Unresolved Questions or Issues
"I7: Pre-Release Software
TS: Failure Reports and Engineering'Changes

I l
4 I

E5: Software Development and
Certification

13: E4 Complete. 1: #. E16: #nI

llE16: #2I
llE16: #1

t4Increment:[omeSDevelopment [_

C tCertifscation 3Pjeonpoructiot

9Th oes Page4

2/28/91 The Cleanroom Engineering Software Development Process Page 4-21

SET-IR70 Section 4: Process Basis for Cicanroom Engineering

Process Completed By Specification, Development and Certification teams.

Previous Process Software Solution Specification (E4)

Pre-condition None

Subsequent Process Prepare Final Project Releases (E6) or Software Solution Specification (E4)

Stimuli E4 Complete (13)

Responses E5 Complete (14), Project Reports (R13)

State Data Usage This process does not directly affect state data, but its sub-processes do. The effect of
the sub-processes on state data will be discussed when the sub-processes are described.

Process Description Use the algorithm below to perform process E5: Software Development and
Certification.

do
con

use E16: Increment Development (for increment 1)
use E16: Increment Development (for increment 2)

use E16: Increment Development (for increment i)

use E16: Increment Development (for increment n)
while C8: Next Increment in Construction Plan Ready?

do
use E17: Increment Certification
if C9: Final Increment?

then
Exit process

od
noc

until
Completion Conditions achieved

od

C8: Next Increment in Construction Plan Ready is true when the code for the next increment, as dictated
in the Construction Plan (Volume 6 of the Specifications), is ready to be submitted to the Certification team
from the Development team. Certification for an increment cannot occur until the next increment for the
system to be certified is verified and therefore ready for Certification.

C9: Final Increment is true if the final increment has been integrated into the system and has been certified.

Page 4-22 The Cleanroom Engineering Software Development Process 2/28/91

SceOx 4: Process Basis for Cleaxreom Engieering SET-IR70

E16: Increment Development
E17: Increment Certification
are described in Sections 4.16 and 4.17, respectively.

Measurement Data Generated Effort

Completion Conditions Each of the following questions must be answered affirmatively in order to
complete this process.

1. Have all necessary measures been gathered?
2. Have all completion conditions from both subprocesses (E16 and E17) been achieved (This is

equivalent to asking whether all increments have been developed, verified and certified)?

Keyword References None

2/28/91 The Cleanroom Engineering Software Development Process Page 4-23

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

Page 4-24 The Cleanroom Engineering Software Development Process 2/28/91

Section 4: Process Basis for Cleamomr Engineering SET-IR70

Section 4.6 - Process E6 - Prepare Final Project Releases

Process Summary The Prepare Final Project Releases process converts the state data into the set of final
products for the customer. The process is illustrated in Figure 4.6.1, and is also described in greater detail
below.

Figure 4.6.1 Prepare Final Project Releases Process

Outer State

TI: Project Document Files
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
T5: Project Management Files
T6: Unresolved Questions or Issues
T7: Pre-Release Software
T8: Failure Reports and Engineering Changes

I I
I I

E6: Prepare Final Project
Releases

No

RlI: Distribution Software
Engineering Task ompletio Yes R2: Maintenance Software

14: E5 Complete for Process E6 Conditions R3: Final Specifications
R4: User Documentation

chiev R5: Archived Documentation
SR8: Management Metrics

Process Completed By Specification, Development and Certification teams.

Previous Processes Software Development and Certification (E5).

Pre-condition Software Ready for Release? (C l) = TRUE

2/28/91 The Cleanroom Engineering Software Development Process Page 4.25

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

Subsequent Process None

Stimuli E5 Complete (14)

Responses Distribution Software (RI), Maintenance Software (R2), Final Specifications (,R3), User
Documentation (R4), Archived Documentation (R5), Management Metrics (R8).

State Data Usage This process does not modify the state data, but it uses all of the state data available as
reference material in order to generate responses, which are the final project releases. The Project
Management Files, specifically the project schedule, is also used to determine an allocation of effort and
resources for this process.

Process Description Prepare deliverables using all available resources. These activities may be completed
concurrently and continue until the completion conditions are achieved.

1. Distribution Software (R1) and Maintenance Software (R2) are based on the Pre-Release
Software (TM).

2. The Final Specifications (R3) is based on the Software Specification Files (T2).
3. UserDocumentation (R4) is basedon Software Development Files (T3) and Software Specification

Files (T2).
4. Archived Documentation (R5) is based on Project Document Files (TI), Software Development

Files (T3), Software Certification Files (T4), Project Management Files (T5), Unresolved
Questions or Issues (T6), and Failure Report and Engineering Changes (TM).

5. Management Metrics (R8) is based on Software Specification Files (T2), Software Development
Files (T3), Software Certification Files (T4), Project Management Files (T5), and Unresolved
Questions or Issues (T6).

6. The engineering team may also need to participate in a review where the sponsor accepts the
deliverables (for example, if the project is following 2167A, the reviews are called the Formal
Qualification Review and the Production Readiness Review).

Measurement Data Generated Effort

Completion Conditions Each of the following questions must be answered affirmatively in order to
complete this process.

1. Are all deliverables complete and consistent?
2. Have all necessary measures been gathered?
3. Have all additions to, deletions from and modifications to the state data been completed?
4. Have all responses from the process been submitted?
5. Have all pertinent reviews for this process been completed?
6. Have all action items generated during reviews that pertain to this process been completed?

Keyword References
Review - Section 4.8

Page 4-26 The Cleanroom Engineering Software Development Process 2/28/91

Section 4: Process Basis for Ckaaroom Engineering SETroR70

Section 4.7 - Process E7 - Maintain Project Schedule

Process Summary The Maintain Project Schedule process updates the project schedule, which is a part of
the Project Management Files, to have it accurately reflect the past, present and future of the project. The
schedule lists tasks, and for each task there are dates and resource and effort allocations. Additionally, all
external and internal milestones and reviews are maintained here. The process is illustrated in Figure 4.7.1,
and is also described in greater detail below.

Figure 4.7.1 Maintain Project Schedule Process

Outer State

TI: Project Document Files
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
TS: Project Management Files
T6: Unresolved Questions or Issues
17: Pre-Release Software
T8: Failure Reports and Engineering Changes

I 1t
I I

V I

E7: Maintain Project
Schedule

No

II: El Complete . forProcessompletio Yes R7: Project Schedule
S6: Master Project Conditions " Rl1: Schedule Change

Schedulechiev Request

Process Completed By Engineering team manager.

Previous Processes Program Management (E-2)

2/28/91 The Cleanroom Engineering Software Development Process Page 4-27

SET-IR70 Section 4: Process Basis for Ckeanroom Engineering

Pre-condition Schedule to be Modified/Published? (C2) = TRUE

Subsequent Process Maintain Project Schedule (E7)

Stimuli E1 Complete (II), Master Project Schedule (S6)

Responses Project Schedule (R7), Schedule Change Request (R1 1).

State Data Usage This process modifies E5, the Project Management Files. Specifically, the project
schedule and task assignments in the Project Management Files are modified. That state data will be
changed, while all other state data is just used as reference.

Process Description Complete (achieve Completion Conditions for) the following engineering tasks each
time the process is invoked as a result of condition C2 being true.

1. Review state data in order to determine the present state of the project.
2. Based on the present state of the project, determine engineering tasks that must be added,

modified or deleted.
3. For each task, determine the time period necessary for the task, and assign staff and resources to

the task. Complete a task assignment for the task. If a task assignment is to be deleted, do so.
Also modify any existing tasks that must be modified. Update the project schedule according to
the task assignments.

4. Include task assignments to fulfill any reviews, milestones, or other items on the Master Project
Schedule. Note all reviews, milestones or other items on the project schedule.

5. If the any new or modified task assignment make the present project schedule inconsistent with
the Master Project Schedule, submit a Schedule Change Request (R 11). In these cases, the
project schedule must not be changed until a new/updated Master Project Schedule is received.
If a new Master Project Schedule is not received, then the change request has been denied and
the engineering team must conform to the previous schedule.

6. The project schedule is published whenever there is a change to the Master Project Schedule, and
at the intervals stated in the Project Charter and the Master Project Schedule.

Measurement Data Generated Effort, Status or Schedule

Completion Conditions Each of the following questions must be answered affirmatively in order to
complete this process each time the process is invoked as a result of condition C2 being true.

1. Have all defined task assignments been given a completion schedule, as well as staff and resource
allocations?

2. Are all task assignments (internal schedule) consistent with the project schedule and the Master
Project Schedule (external schedule)?

3. Have all known milestones been put on the schedule?
4. Is the project schedule complete and consistent in relationship to the Master Project Schedule?
5. Has the project schedule been published due to changes in the Master Project Schedule or by time

interval?
6. Does the project schedule list all sponsor requested reviews?

Page 4-28 The Cleanroom Engineering Software Development Process 2/28/91

Section 4: Process Basis for Cleanroom Engineering SET-ER70

7. Have all additions to, deletions from and modifications of the state data been made?
8. Have all necessary measures been gathered?
9. Have all external responses been submitted?

10. Have all pertinent reviews for this process been completed?
11. Have all action items generated during reviews that pertain to this process been completed?
12. Have all information to be preserved been placed in the correct state data?

Keyword References
Review - Section 4.8

2/28/91 The Cleanroom Engineering Software Development Process Page 4-29

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

Page 4-30 The Cleanroom Engineering Software Development Process 2/28/91 U

Section 4: Process Basis for Cleanroom Engineering SET-IR70

Section 4.8 - Process E8 - Prepare For and Conduct Project Review

Process Summary The Prepare For and Conduct Project Review process gives the engineering team the
opportunity to gather materials, distribute them and conduct a project review. Reviews are conducted when
one is scheduled, a certain amount of work is completed, or when a major problem is evident. The process
is illustrated in Figure 4.8.1, and is also described in greater detail below.

Figure 4.8.1 Prepare For and Conduct Project Review Process

Outer State

TI: Project Document Files
T2: Software Specification Files
T3: Software Development Files
"T4: Software Certification Files
TS: Project Management Files
"T6: Unresolved Questions or Issues
"T7: Pre-Release Software
"T8: Failure Reports and Engineering Changes

I IL
I I

E8: Prepare For and Conduct
Project Review

No

Engineering
Tasks' 4omefo

Ys

": El Complete f Conditions R6: Project Review
chiv Documentation

Process Completed By Specification, Development and Certification teams.

Previous Processes Program Management (E2)

Pre-condition Work Complete/Review Scheduled/Major Problem? (C3) = TRUE

2/28/91 The Cleanroom Engineering Software Development Process Page 4-31

SET-IR70 Section 4: Process Basis for Ckeanroomn Engineering

Subsequent Process Program Management (E2)

Stimuli El Complete (I1)

Responses Project Review Documentation (R6).

State Data Usage This process uses the state data, to generate the review material. All of the state data is
used to prepare for and conduct a review.

Process Description Reviews are processes, requested by the project sponsor, in order to assess progress
on a project. A project may have any number of reviews, including none. There are a number of reviews
in which the engineering team typically will be required to participate. These reviews typically include:

a) Software Requirements Review (where the understanding of the mission of the software project
and available materials are audited)

b) Preliminary Design Review (where the Specification are audited),
c) Critical Design Review (where each increment, both development and certification, is audited),
d) Software Acceptance Review (which checks for the completeness of products before delivery),
e) Increment Failure Review (where failure-laden increments are audited).

Although each review has a different purpose, each (as well as unscheduled reviews) is conducted in the same
manner, using the following sequence of engineering tasks each time the process is invoked as a result of
condition C3 being true. The processes are conducted until the Completion Conditions are achieved:

Prepare for a review by using the following approach:

1. Assembling material necessary for the review from the current state data files.
2. Checking the material to ensure that it is complete, consistent and accurate.
3. Confirming date for review. If review is as yet unscheduled, the project schedule must be

changed.

Conduct reviews using the following approach:

1. Distribute copies of material to be reviewed in advance.
2. Give review team ample time to review all documents.
3 Give the review team ample opportunity to prepare responses.
4. Be present at the scheduled review.
5. Deliver a complete, clear and concise presentation.
6. Answer all questions asked by the review team, and record unresolved questions.
7. Participate in briefing of review team.
8. Record all action items in minutes with a timetable outlining response schedule for the action

items. Specifically, each action item needs to be delegated to a person or a team. The action item
must also be assigned a date by which it needs to be resolved.

Measurement Data Generated Effort, State Data Produced

Page 4-32 The Cleaenoom Engineering Software Devulopment Process 2/28/91

Section 4: Process Basis for Cleanroom Engineering SET-IR70

Completion Conditions Each of the following questions must be answered affirnatively in order to
complete this process.

1. Has the Engineering team manager determined that the Specification, Development and
Certification teams are sufficiently prepared for the project review?

2. Have all additions to, deletions from and modifications of the state data been completed?
3. Have all external responses been submitted?
4. Have all necessary measures been gathered?
5. Is the sponsor satisfied that the review is complete? If not, has another review been scheduled?
6. Have all action items from the review been assigned?

Keyword References
Review - Section 3.10

2/28/91 The Cleanroom Engineering Software Development Process Page 4-33

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

Page 4-34 The Cwanroom Egineerig Software Development Process 2/28/91

Section 4: Process Basisfor Cleanroom Engineering SET-IR70

Section 4.9 - Process E9 - Prepare and Submit Project Status Reports

Process Summary The Prepare For and Submit Project Status Reports process leads to the preparation and
submission of status reports, as the schedule dictates. The primary task is the collection and organization
of measurement data, which is summarized in the status reports. The process is illustrated in Figure 4.9. 1,
and is also described in greater detail below.

Figure 4.9.1 Prepare For and Submit Project Status Reports Process

Outer State

TI: Project Document Files
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
T5: Project Management Files
T6: Unresolved Questions or Issues
"7: Pre-Release Software

T8: Failure Reports and Engineering Changes

I IL
I I

E9: Prepare and Submit
Project Status Reports

No

II"E1Enginee .• f r in Prce sW]E9mle Yes
11: El Complete I Conditions R9: Project Status Reports

Process Completed By Engineering team manager and Specification, Development and Certification
teams.

2/28/91 The Cleanroom Engineering Software Development Process Page 4-35

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

Previous Processes Program Management (E2)

Pre-condition Status Scheduled? (C4) = TRUE

Subsequent Process Program Management (E2)

Stimuli El Complete (I1)

Responses Project Status Reports (R9)

State Data Usage This process modifies T2 - T6 by inserting new information, as well as using them as
reference material. Other state data are not modified, they are used solely as reference material. The project
schedule of the Project Management Files is used to determine when status reports should be submitted, and
to determine an effort and resource allocation for the process.

Process Description Gather all necessary data, until Completion Conditions are achieved, to maintain
intellectual control over the development process. Data gathered during other processes are submitted
during this process. Available resources are used to complete and submit Project Status Reports, according
to the schedule dictated in the project schedule. The specific types of status reports to be submitted are
(should be) described in the Master Project Schedule.

The following is a basis set of metrics that need to be gathered for a Cleanroom project. These can be
augmented by other (usually organization specific) measures. The actual forms or other schema for data
collection, and a suggested strategy for gathering data are also presented here. Depending on the directions
in the Project Charter, some, most or all of this information will be submitted on status reports. The data is
categorized into six general areas. Units represent the specific information that is gathered. The rate suggests
how often the data should be gathered. The gathered during column lists the processes during which the
specific data is can be found. Data is stored in the state data listed below. The goal here is to gather a-, much
useful data as possible while expending the minimum effort necessary. The data to be gathered is as follows:

T= of ata Unit(s) Gathered R= During Stored In

Effort Hours per process Work EO - E24 T5
Sampling

State Data Boxes developed Bi-weekly E18 T3
Produced Test scenarios developed E19 T4

Questions/Issues submitted El, ElI T6
Questions/Issues resolved El, ElI T6
Specification changes made E14, E15, E20 T2

Status or Tasks assigned Weekly E7 T5
Schedule Tasks completed E7 T5

Schedule modifications E7 T5

Page 4-36 The Cleanroom Engineering Software Development Process 2/28/91

"Sectien 4: Process Basis for Cleenroon Engineering SET-IR70

Library Numbers of components By system E22 T4
Management Sizes of components version E22 T4

Numbers of new for each E22 T4
components increment

Numbers of modified E22 T4
components

Number of compiled E22 T4
components

Compilation CPU time E22 T4
Number of assembled E22 T4
components

System dates for each E22 T4
version

Reliability Execution time per test By system E23 T4
scenario version

Failure report numbers per E22, E23 T4
test scenario

System version for each test E22, E23 T4
scenario

In addition to the measures gathered here, a number of measures such as the following can be derived from
the above-mentioned data.

Measures Rate Stored In

Productivity Hours per Process By increment T5
Sizes of components

System Dates and states of By system T4
Reliability executable systems version

Execution time per test
scenario

Failure repwen numbers
per test scenario

System version for each
test scenario

Most of the library management and reliability measures can be gathered directly by simple on-line tools with
a minimum of human effort. Effort, state data produced, and status/schedule are gathered directly by people,
but should not lead to a large amount of extra expended effort. Engineering team members will want to have
a complete count of state data produced, as it shows that they are completing some amount of work, and is
data that is t.asily verifiable, as one will be able to cross reference boxes with executable modules. The
manager always needs to keep track of task status and schedule, so the manager's additional effort is simply
summarizing existing information, which most managers already do. Measuring effort by work sampling
is a little niore sophisticated. With work sampling, engineering team members are asked at random intervals,

2/28/91 The Cleanroom Engineering Software Development Process Page 4.37

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

what they are doing. This leads to accurate measurement, as the team member only needs to remember what
is being done at the present moment, and will lead to accurate extrapolation, using the power of statistics.
Derived measures will need some additional effort, but that effort will be minimal.

These measures will lead to the accurate assessment of the Cleanroom process and product. They will
product sufficient information to modify the process, if necessary, and still be useful in the modified process.
They can also be very efficiently gathered.

Measurement Data Generated Effort

Completion Conditions

1. Are the Project Status Reports complete and accurate for the time period for which the status
report is being submitted?

2. Are consistent criteria being used to complete the Project Status Reports?
3. Have all Project Status Reports for the time period been completed and submitted?
4. Have all additions to, deletions from and modifications of the state data been made?
5. Have all external responses been submitted?
6. Have all necessary measures been gathered?
7. Have all pertinent reviews for this process been completed?
8. Have all action items generated during reviews that pertain to this process been completed?

Keyword Reference
Review - Section 4.8

Page 4-38 The Cleanroom Engineering Software Development Process 2/28/91

Sectieo 4: Process Basis for Ckeaxroom Engineering SET-1R30

Section 4.10 - Process El0 - Receive Stimuli

Process Summary The Receive Stimuli process is concerned with the receipt and filing of all externally
received stimuli. The stimuli are filed in a manner which makes the information easily accessible by the
entire staff. The process is illustrated in Figure 4.10.1, and is also described in greater detail below.

Figure 4.10.1 Receive Stimuli Process

Outer State

TI: Project Document Files
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
TS: Project Management Files
T6: Unresolved Questions or Issues
T7: Pre-Release Software
T8: Failure Reports and Engineering Changes

I I

El0: Receive Stimuli

11: El Complete
S 1: Project Charter
S2: Documents/ No

Working Papers
S3: Informal

Communication Engineering Task-
S4: Project Review for Process El 0ompleto Ye

Minutes Conditions - 17: El0 Complete
S5: Resource

Allocation
S6: Master Project

Schedule

Process Completed By Specification, Development and Certification teams.

Previous Process Project Information Management (E3)

Pre-condition Stimuli Received? (C5) = TRUE

Subsequent Process Project Information Management (E3)

2/28/91 The Cleanroom Engineering Software Development Process Page 4-39

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

Stimuli E l Complete (I1), Project Charter (S 1), Documents/Working Papers (S2), Informal Communication
(S3), Project Review Minutes (S4), Resource Allocation (S5), Master Project Schedule (S6).

Responses ElO Complete (17)

State Data Changes This process leads to new and modified material appearing in the Project Document
Files (additional reference material) and the Project Management Files (additional management information).
Unresolved Questions or Issues are modified when the stimuli received is the resolution to an external
question or issue. The Project Management Files, specifically the project schedule, is used to determine a
resource and effort allocation for the process.

Process Description Complete (achieve Completion Conditions for) the following sequence of engineering
tasks for the Receive Stimuli process each time the process is invoked by condition C5 being true:

1. Receive the stimuli.
2. If the stimulus is S3 (Informal Communication), then it must be written down if it is to be

archived.
3. The information must then be inserted into the state data, in the manner described below:

a) S1, S5 and S6 (Project Charter, Resource Allocation and Master Project Schedule) are put
in the Project Management Files.

b) S2, S3, and S4 (Documents/Working Papers, Informal Communication, and Project Review
Minutes) are put into the Project Document File.

4. Documents/Working Papers include information that the engineering team requires. This
information includes requirements, models, external trade studies, constraints, interfaces, etc.

5. Notify the rest of the engineering team of the stimuli received.
6. If any of the information received is the answer to an Unresolved Question or Issue, then that

section of state data must also be modified in order to reflect the resolution. In that way, the
resolution of the question can be kept with the question itself.

Measurement Data Generated Effort

Completion Conditions Each of the following questions must be answered affirmatively in order to
complete this process.

1. Have all stimuli been moved to all of the correct state data?
2. Have all other additions to, deletions from and modifications of the state data been completed?
3. Have all necessary measures been gathered?
4. Have all engineering team members who need the information received been notified?

Keyword References None

Page 4-40 The Cleanroom Engineering Software Development Process 2/2891

Section 4: Process Basis for Cleanroom Engineering SET-1R70

Section 4.11 - Process Ell - Submit a Question or Issue

Process Summary The Submit a Question or Issue process is concerned with questions or issues which are
to be submitted or resolved internally and/or submitted externally. This is also where the responses to
internal questions will appear. The process is illustrated in Figure 4.11.1, and is also described in greater
detail below.

Figure 4.11.1 Submit a Question or Issue Process

Outer State

TI: Project Document Files
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
T5: Project Management Files
T6: Unresolved Questions or Issues
T7: Pre-Release Software
T8: Failure Reports and Engineering Changes

I4

El1: Submit a Question or Issue

El Complete to Submit/Resolve
/ an Internal omlei Yes

Question or Issue No Complti Ys RIO: ExternallyCodit•ivo nSubmitted

? Questions
10. or Issues

Process Completed By Specification, Development and Certification teams.

Previous Process Project Information Management (E3)

2/28/91 The Cleanroom Engineering Software Development Process Page 4-41

SET-IR70 Section 4: Process Basts for Cleanroom Engineering

Pre-condition Questions or Issues? (C6) = TRUE

Subsequent Process Project Information Management (E3)

Stimuli El Complete (I1)

Responses Externally Submitted Questions or Issues (RIO)

State Data Changes This process leads to new and modified material appearing in Unresolved Questions
and Issues (resolutions to existing questions or issues). All other state data is used as reference in order to
help resolve internal questions or issues. The Project Management Files, specifically the project schedule,
is used to determine a resource and effort allocation for the process.

Process Description Questions or issues are first submitted internally. The intent is to resolve as many
questions/issues as possible internally. If the question or issue cannot be resolved internally, then it is
submitted externally to be resolved.

The following algorithm is used to complete the Submit a Question or Issue process, until the Completion
Conditions are achieved:

con
Submit an internal question or issue. The question will be placed in state data.
Resolve any submitted internal questions or issues by analyzing available material in order

to reach a resolution. The resolution will then be placed in state data along with any other
material generated.

noc
if C10: External Question or Issue

then
Submit an Externally Submitted Question or Issue (RIO) for resolution

fi

C10: External Question or Issue is true when there is a question or issue that cannot be solved internally
and must be solved externally. Usually this occurs after an attempt has been made to resolve the question
or issue internally. The only option is to submit the question or issue externally.

Measurement Data Generated Effort, State Data Produced

Completion Conditions Each of the following questions must be answered affirmatively in order to
complete this process.

1. Have all additions to, deletions from and modifications of the state data been made?
2. Have all questions that cannot be resolved by the engineering team been formally submitted as

responses?
3. Have all necessary measures been made?

Keyword References -
Unresolved Questions or Issues - Section 5.6

Page 4-42 The Cleanroom Engineering Software Development Process 2/28/91 |

- Section 4: Process Basisfor Cleanroom Engineering SET.R70

Section 4.12 - Process E12 - Understand Problem Domain

Process Summary The Understand Problem Domain process leads the engineering team to investigate,
analyze and document the problem to be solved in order to understand it better. This understanding can be
assisted by reading, interviews, modeling, trade studies, prototyping and focus group interviews. The
process is illustrated in Figure 4.12.1, and is also described in greater detail below.

Figure 4.12.1 Understand Problem Domain Process

Outer State

TI: Project Document Files
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
TS: Project Management Files
T6: Unresolved Questions or Issues
T7: Pre-Release Software
"T8: Failure Reports and Engineering Changes

I I

'V I

E12: Understand Problem Domain

No

Engineering Tasks
II: El Complete for Process E12 ompletio Yes 18: E12 Complete"11: ECConditions R13: Project Reports

Process Completed By Specification, Development and Certification teams.

Previous Processes Software Solution Specification (E4)

Pre-condition None for the first iteration, Software Ready For Release? (Cl) = FALSE for subsequent
iterations.

2/28/91 The Cleanroom Engineering Software Development Process Page 4-43

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

Subsequent Process Write Construction Plan (E15)

Stimuli El Complete (I1)

Responses E12 Complete (18), Project Reports (R13)

State Data Usage This process directly inserts information into the first four engineering files, as more is
understood about the project. Existing information may also be modified as the level of understanding
increases. The project schedule in the Project Management Files is used to determine the effort and resource
allocation for the process.

Process Description Complete the following engineering tasks during the Understand Problem Domain
process. These engineering tasks can be conducted concurrently until the completion conditions are
achieved.

1. Perform sufficient iterations of investigation, analysis and documentation to achieve the passage
criteria. Investigations may include: interviews, top down exploration, descriptive modeling
(data flow diagrams, state transition diagrams, entity relationship diagrams, clear boxes,...),
usage scenario creation, trade studies, prototyping and focus group interviews.

2. Read all available literature that may clarify problem domain issues.
3. Define requirements, constraints andobjectives, by modifying system and software requirements

submitted by external organizations, and by creating new ones.
4. Use top-down and bottom-up thinking to understand the problem domain.
5. If any acquired knowledge is considered to have value outside of the project team, then a Project

Report that contains the information is submitted.

Measurement Data Generated Effort

Completion Conditions Each of the following questions must be answered affirmatively in order to
complete this process.

1. Has the project manager determined that a sufficient understanding of the problem domain has
been gained to complete this process?

2. Has the Specification team developed an approved copy of the specifications?
3. Is there a clear definition of what is to be accomplished by the software?
4. Has acleardescription of all external interfaces for the software (converting all real-world stimuli

into digital stimuli and digital responses into real-world responses) been determined?
5. Is there a clear model which describes the problem domain?
6. Has the model been judged as adequate to describe the problem domain?
7. Do requirements express conceptual integrity (including derived requirements generated as well

as external requirements)?
8. Have all additions to, deletions from and modifications of the state data been made?
9. Have all necessary measures been gathered?

10. Have all external responses been submitted?

Page 4-44 The Clemnroom Engineering Softwwre Demelopmetw Process V28/91 3

Secdon 4: Process Rasisfor Cleanroom Engineering SET-IR7O

11. Have all pertinent reviews for this process been completed (for example, if this process is
following 2167A, the System Requirements Review and the System Design Review need to have
been completed)?

12. Have all action items generated during reviews that pertain to this process been completed?

Keyword References
Review - Section 4.8

2/28/91 The Cleanroom Engineering Software Development Process Page 4-45

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

Page 4-46 The Cleanvoom Engineering Software Development Process 2/28/91 3

Section 4: Process Basis for Clearoom. Engineering SET-IR70

Section 4.13 - Process E13 - Understand Solution Domain

Process Summary The Understand Solution Domain process leads the engineering team to investigate,
analyze and document the solution to the problem in order to understand it better. This understanding can
be assisted by reading, interviews, trade studies, prototyping and focus group interviews. This process is also
the time to analyze opportunities for reuse of specifications and other material from previous projects or
repository libraries. The process is illustrated in Figure 4.13.1 ;and is also described in greater detail below.

Figure 4.13.1 Understand Solution Domain Process

Outer State

TI: Project Document Files
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
TS: Project Management Files
T6: Unresc ved Questions or Issues
T7: Pre-Release Software
T8: Failure Reports and Engineering Changes

I jL

I I

V I

E13: Understand Solution Domain

I1: El Complete •Ior Process E13 ompletio 9: E3 Complete

eConditions R13: Project Reports

Process Completed By Specification, Development and Certification teams.

Previous Processes Software Solution Specification (E4)

2/28/91 The Cleanroom Engineering Software Development Process Page 4-47

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

Pre-condition None for the first iteration, Software Ready For Release? (Cl) = FALSE for subsequent
iterations.

Subsequent Process Write Construction Plan (F15)

Stimuli El Complete (11)

Responses E13 Complete (19), Project Reports (R13)

State Data Usage This process directly inserts information into the first four engineering files, as more is
understood about the project. Existing information may also be modified as the level of understanding
increases. The project schedule in the Project Management Files is used to determine an effort and resource
allocation for this process.

Process Description Complete the following engineering tasks during the Understand Solution Domain
process. These engineering tasks can be conducted concurrently until the Completion Conditions are
achieved.

1. Perform sufficient iterations of investigation, analysis and documentation to achieve the
Completion Conditions. Investigations may include: prototyping, focus group interviews,
bottom up exploration, analytic modeling, and trade studies.

2. Read all available literature that may clarify solution domain issues.
3. Examine existing solutions to related problems (typically in other organizations).
4. Use top-down and bottom-up thinking in order to understand the solution domain.
5. Examine opportunities forreuse of specifications and previously used development, certification,

and management file material.
6. Develop a philosophy for implementing the solution.
7. If any acquired knowledge is considered to have value outside of the project team, then a Project

Report that contains the information is issued.

Measurement Data Generated Effort

Completion Conditions Each of the following questions must be answered affirmatively in order to
complete this process.

1. Has the project manager determined that a sufficient understanding of the solution domain has
been gained to complete this process?

2. Has the Specification team developed an approved copy of the specifications?
3. Is there a clear definition of what is to be accomplished by the software?
4. Has a clear description of all external interfaces for the software (converting all real-world stimuli

into digital stimuli and digital responses into real-world responses) been determined?
5. Is there a clear model which describes the solution domain?
6. Has the model (programming philosophy) been judged as adequate to describe the solution

domain?
7. Have all pertinent reviews for this process been completed (for example, if this process is

following 2167A, the System Requirements Review and the System Design Review need to have
been completed)?

Page 4-48 The Cleanroom Engineering Software Development Process 2/28/91 U

SectIoe 4: Process Basis for Ceanroom Engineemg SETIR70

8. Have all additions to, deletions from and modifications of the state data been made?
9. Have all necessary measures been gathered?

10. Have all external responses been submitted?
11. Have all action items generated during reviews that pertain to this process been completed?

Keyword References
Review - Section 4.8

2/28/91 The Cleanroom Engineering Software Development Process Page 4-49

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

Page 4-50 The Cleanroom Engineering Software Development Process 2/28/91 U

"Section 4: Process Basisfor Cleanroom Engineering SET-IR70

Section 4.14 - Process E14 - Write Specifications

Process Summary The Write Specifications process is where the Specification team writes the first five
volumes of the six volume Specifications. Those five volumes are: the Mission Volume, the User's
Reference Manual Volume, the Functional (Black Box) Specification Volume, the Functional Specification
Verification Volume, and the Usage Profile Volume. The process is illustrated in Figure 4.14.1, ar I is also
described in greater detail below.

Figure 4.14.1 Write Specifications Process

Outer State

TI: Project Document Files
72: Software Specification Files
T3: Software Development Files
T4: Software Certification Fles
T5: Project Management Files
T6: Unresolved Questions or Issues
T7: Pre-Release Software
T8: Failure Reports and Engineering Changes

I t
I I

E14: Write Specifications

IEngineering Tasks*
N

El Complete - Cniosfor Process E14 - 1t I10: E14 Complete

Process Completed By Specification team

Previous Processes Software Solution Specification (E4)

Pre-condition None for the first iteration, Software Ready For Release? (Cl) = FALSE for subsequent
iterations.

Subsequent Process Write Construction Plan (E15)

2/28/91 The Cleanroom Engineering Software Development Process Pa-,,e 4-.1

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

Stimuli El Complete (11)

Responses E14 Complete (110)

State Data Usage This process creates the Specifications in the Software Specification Files, so that data
is affected. Additionally, Project Document Files and Project Management Files are used as reference
material in writing the first five volumes of the Specifications. The project schedule of the Project
Management Files is used in order to determine effort and resource allocation for the process.

Process Description Complete (achieve Completion Conditions for) the following engineering tasks during
the Write Specifications process:

I. Use the knowledge gained from understanding the problem and solution domains to write the
Specifications. Write the Specifications in the required format. Specifically, the specifications
consist of six documents: the Mission Volume, the Functional (Black Box) Specification
Volume, the Functional Specification Verification Volume, the User's Reference Manual
Volume, the Usage Profile Volume, and the Construction Plan. The first five documents must
be written during this stage, using a spiral workplan approach.

2. Use bottom-up exploration to better understand the solution domain in order to create the
Specifications in a top-down manner.

3. Determine if it is possible to reuse Specifications from other projects. If so, use the material.
4. The Function Specification Verification Volume must be emphasized. The is the volume where

the Specification team must persuade all readers that the Functional Specification is correct.
5. Once the Specification team believes that they have written a 'complete' version of the

Specifications, the Development and Certification teams may need to review and approve the
Specifications in order to ensure that both teams thoroughly understand the material presented.
If material is reviewed and corrections are needed, then the Specifications must be corrected and
re-reviewed by the Development and Certification teams.

6. Once the Specification team is convinced that this task is completed, the Specifications must be
reviewed and approved by management as a formal review.

7. If the Specifications are not approved, the Specification team continues to refine the Specifications,
otherwise, this process is completed.

8. Once this process is considered complete, the Specifications must be put under some configuration
management to control change to the document. Specifically, only the Specification team should
be able to modify the Specifications.

Measurement Data Generated Effort, State Data Produced

Completion Conditions Each of the following questions must be answered affirmatively in order to complete
this process.

1. Are the Specifications complete, consistent and unambiguous to the extent possible?
2. Have the Specifications been reviewed and accepted by the Certification and Development

teams?
3. Has the Specification team demonstrated that the Specifications describe a cost effective

solution?

Page 4-52 The Cleanroom Engineering Software Development Process 2V28/91

Secdon 4: Process Basis for Cleanroom Engineering sEr-M70

4. Is the present version of the Specifications consistent with the Master Project Schedule, Project
Charter, etc.?

5. Have the Specifications been placed under configuration management?
6. Are the Specifications consistent with the system requirements, and any software requirements

that were submitted by management.
7. Are the Specifications for the software consistent with the rest of the system, including hardware

and human activities (for example, in terms of 2167A, these issues would need to be resolved by
the System/Segment Design Document)?

8. Are the Specifications consistent with the software development plan?
9. Have the five volumes of the Specifications been placed in the correct state data?

10. Have all necessary measures been gathered?
11. Have all pertinent reviews for this process been completed?
12. Have all action items generated during reviews that pertain to this process been completed?
13. Have all information to be preserved been placed in the correct state data?

Keyword Reference
Review - Section 4.8

Specification, Mission Volume, Functional (Black Box) Specification Volume, Functional
Specification Verification Volume, User's Reference Manual Volume, Usage Profile Volume,
Construction Plan - Section 5.2 and Section 8

2/28/91 The Cleanroom Engineering Software Development Process Page 4-53

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

Page 4-54 The Cleanroom Engineering Software Development Process 2/28/91

Section 4: Process Basis for Cleanroon Engineering SET-1R70

Section 4.15 - Process E15 - Write Construction Plan

Process Summary The Write Construction Plan process is where the Specification team writes the sixth
volume of the Specifications, the Construction Plan. The Specification team must write the plan to ensure
that increments are developed in the most efficient manner possible to permit usage testing and to permit the
incorporation of reuse components. The construction planning phase is the time to plan for reliability by
selecting the construction plan that will yield the greatest reliability. The process is illustrated in Figure
4.15.1, and is also described in greater detail below.

Figure 4.15.1 Write Construction Plan Process

Outer State

TI: Project Document Files
172: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
"T5: Project Management Files
T6: Unresolved Questions or Issues
T7: Pre-Release Software
T8: Failure Reports and Engineering Changes

I IL
I I

E15: Write Construction Plan

18: El12 Complete IEngineering Tasks
18: E13 Complete ,for Process EIS :omp5tio Yes
19: E13 Complete Conditions Il11: El 15 Complete
I10: El4 Complete

Process Completed By Specification team

Previous Processes Understand Problem Domain (E12), Understand Solution Domain (E13), and Write
Specifications (E14)

2/28/91 The Cleanroom Engineering Software Development Process Page 4-55

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

Pre-condition Continue with Project (C7) = TRUE on subsequent iterations

Subsequent Process Software Solution Specification (E4)

Stimuli E12 Complete (18), E13 Complete (19), E14 Complete (110)

Responses E15 Complete (I11)

State Data Usage This process, of course, creates the sixth volume of the Specifications in the Software
Specification Files, so that data is affected. Additionally, the Project Document Files and the Project
Management Files are used as reference material in writing the this section of the Specifications. The project
schedule in the Project Management Files is used to determine effort and resource allocations for this
process.

Process Description Complete (achieve Completion Conditions for) the following engineering tasks during
the Write Construction Plan process:

1. Write the Construction Plan, which is the sixth volume of the Specifications, to ensure that the
increments will be developed in the most efficient manner possible to permit usage testing. The
plan should allow for the Specification, Development and Certification teams to work in parallel.

2. Plan for reuse and reliability. See the IR-70 Phase 1 report "STARS-Cleanroom Reliability:
Cleanroom Ideas In the STARS Environment," September 30, 1989.

3. When the project is replanned, the Construction Plan must be rewritten.
4. The Construction Plan is preserved by the engineering team as the sixth volume of the

Specifications.
5. Creation of the Construction will lead to the Project Management Files being modified (by

process E9), as now the increments are placed in a schedule, which leads to task assignments
being generated. The Construction Plan determines what units, functions, etc. will be in each
increment. Each will be made into sets of task assignments.

Measurement Data Generated Effort, State Data Produced

Completion Conditions Each of the following questions must be answered affirmatively in order to
complete this process.

1. Will the Construction Plan meet the following constraints:
a) resources,
b) budget,
c) schedule,
d) provides the level of quality desired for the project?

2. Has the Construction Plan decomposed the project into the best set of executable increments from
the following standpoints:
a) Size suitable to development teams' capabilities (all modules should normally be under 10

KLOC barring exceptional circumstances),
b) Complexity suitable to certification team's capabilities,
c) Reuse,

Page 4-56 The Cleanroom Engineering Software Development Process 2/28/91

"Section 4: Process Basis for Cleanroom Engineering SET.-R70

d) Prototyping,
e) Complexity/size of the predicted solution domain,
f) Hardware domain/operating environment of the system to be implemented,
g) Client/deliverable obligations?

3. Are the Specifications consistent with the software development plan?
4. Has the Construction Plan been placed in the correct state data?
5. Have all necessary measures been gathered?
6. Have all pertinent reviews for this process been completed?
7. Have all action items generated during reviews that pertain to this process been completed?
8. Have all information to be preserved been placed in the correct state data?

Keyword References
Review - Section 4.8
Specifications, Construction Plan - Section 5.2 and Section 8

2/28/91 The Cleanroom Engineering Software Development Process Page 4-57

SET-1R70 Section 4:- Process Basis for Cleanron Eqlneednxg

Page 4-58 The Cleanrm Eq~inteeflg Software Development process 2/28/1

Section 4: Process Basis for Cleanroom Engineering SET.TIR70

Section 4.16 - Process E16 - Increment Development

Process Summary The Increment Development process conducts all of the processes that are a part of
developing an increment. These processes include the development and verification of the code for an
increment, the development of certification tests for an increment, updating the specifications, and
increasing the understanding of the problem and solution domains. The process is illustrated in Figure
4.16.1, and is also described in greater detail below.

Figure 4.16.1 Increment Development Process

Outer State

TI: Project Document Files
T2: Software Specification Files
"13: Software Development Files
T4: Software Certification Files
T5: Project Management Files
T6: Unresolved Questions or Issues
Ti: Pre-Release Software
T8: Failure Reports and Engineering Changes

I 4
I I

E16: Increment Development #i

E18:
Develop
"Increment i

IE19:/
lDevelop Cert. Test; No
"Ifor Incr. 1,2' ",

13: E4 Complete - pletio Yes 15: Code for
E20: Conditions 15. Build i
Update chi" R13: Project
Specifications ?Reports

/E21: Incr ing S--- [Understanding of
|Problem & Solutin
[Domains as Requi ed

2/28/91 The Cieanroom Engineering Software Development Process Page 4-59

SET-.R70 Secuido 4: Prouce Bass for Ckaroom Eageign

Process Completed By Specification, Development and Certification

Previous Processes Software Development and Certification (ES)

Precondition None

Subsequent Process Software Development and Certification (ES)

Stimuli E4 Complete (13)

Responses Code for Build i (15), Project Reports (R13)

State Data Usage This process does not modify state data, although its sub-processes do. The effect of the
sub-processes on the state data will be detailed in each of the sub-process descriptions.

Measurement Data Generated Effort

Process Description Follow the algorithm below for the Increment Development process:

do
con

use El8: Develop Increment i
use E19: Develop Certification Tests for Increments 1.i
use E20: Update Specifications
use E21: Increase Understanding of Problem and Solution Domains as Required

noc
until

Completion Conditions achieved
od

E18: Develop Increment 1
E19: Develop Certification Plan and Tests for Increments 1...i
E20: Update Specifications
E21: Increase Understanding of Problem and Solution Domain as Required
are described in Sections 4.18, 4.19, 4.20 and 4.21, respectively.

Completion Conditions Each of the following questions must be answered affirmatively in order to
complete this process.

1. Have all necessary measures been gathered?
2. Have all completion conditions for all four sub-processes (E18, E19, E20, E21) been achieved?

Keyword Reference None

Page 4-60 -e ClWereeus Enia~riig Software Devulepmit Process 22S/91M

Secs'dOn 4: Process Basisfor Cleanroom Engineering SET-IR70

Section 4.17 - Process El7 - Increment Certification

Process Summary The Increment Certification processconducts all of theprocesses that are a part of certifying
an increment. Code is put under configuration control, compiled, assembled and certified. If failures are
found, the code is corrected and the process continues. This continues until certification for an increment
is complete or the effort is abandoned since it is determined that the software exhibits too many failures.
Additionally, the engineering team may work to increase their understanding of the problem and solution
domains. The process is illustrated in Figure 4.17.1, and is also described in greater detail below.

Figure 4.17.1 Increment Certification Process

Outer State

TI: Project Document Files
"T2: Software Specification Files
T3: Software Development Files
"T4: Software Certification Files
T5: Project Management Files
T6: Unresolved Questions or Issues
T1: Pre-Release Software
T8: Failure Reports and Engineering Changes

I I

E17: Increment Certification

Correct Code ye tiu No

Increment B..l _caon,

De Complete.

Domain , C od
[Th ar E nginrg rment ro

Increment 1-

15: Code for Cope?
Build j - 1 6

E21: Increase C16: E17
-.V Understanding of YsComplete

Problem & Solutio i e mpei R13: Project
Domains as Requii ed Codtin Reports

5,D&C?
0] No

2/28/91 The Cleanroom Engineering Software Development Process Page 4-61

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

Process Completed By Specification, Development and Certification teams.

Previous Processes Software Development and Certification (E5)

Pre-condition Next Increment In Construction Plan Ready? (C8) = TRUE and Final Increment? (C9) =

FALSE

Subsequent Process Software Development and Certification (E5)

Stimuli Code for Build j (15)

Responses E17 Complete (16), Project Reports (R13)

State Data Usage This process does not modify state data, although its sub-processes do. The effect of the
sub-processes on the state data will be detailed in each of the sub-process descriptions.

Process Description Follow the algorithm appearing below to complete -the Increment Certification
process:

do
con

use E2 1: Increase Understanding of Problem and Solution Domains as Required
do

use E22: Build System with Increment j
if C11: Pre-Certification Failure?

then
use E24: Correct Code Increment L..j

else
use E23: Certify Increments l..j
if C12: At Least One Failure?

then
if C13: Continue with Certification?

then
use E24: Correct Code Increment l..j

else
Exit process

Ii

until
C14: Certification Complete?

od
noc

until
Completion Criteria achieved

od

Page 4-62 The Cleenroom Engineering Software Development Process 2/28/91 U

"- $Seahon 4: Process Basis for Cleanrom Engineering SET.IR70

Cl1: Pre-Certification Failure is true if a failure has been observed while compiling or assembling the
system.

C12: At Least One Failure is true if failures have been observed while executing certification tests.

C13: Continue with Certification is true if the Certification team has decided to halt certification until the
Development team corrects the observed failures. This includes comparing present with predicted reliability
for the increment. C13 is false if the Certification team has determined, as a result of the volume or severity
of failures observed, that further certification is not beneficial.

C14: Certification Complete is true when the Certification team determines that certification is complete
for the entire system. If C14 is false, certification continues with the next increment.

E21: Increase Understanding of Problem and Solution Domain as Required
E22: Build System with Increment j
E23: Certify Increments 1...j
E24: Correct Code Increment 1...j
are de-xribed in Sections 4.21, 4.22, 4.23 and 4.24, respectively

Measurement Data Generated Effort

Completion Conditions Each of the following questions must be answered affirmatively in order to
complete this process.

1. Have all necessary measures been gathered?
2. Have all completion conditions for all four sub-processes (E21, E22, E23, E24) been achieved?

Keyword Reference None

2/28/91 The Cleanroom Engineering Software Development Process Page 4.63

SET-TRIO Section 4: Preces.; Basis for Cleonroena Engineering

Page 4-64 The Cleannen. Engineering Seftuere Develpepns Process 2/2191

Section 4: Process Basis for Clanroom Engineedng SET-IR70

Section 4.18 - Process ElS - Develop Increment i

Process Summary The Develop Increment i process conducts the design and implementation of the
software product. The Development team follows the Box Structure Algorithm for design and uses Stepwise
Refinement with Functional Verification for implementation. The process is illustrated in Figure 4.18.1, and
is also described in greater dezail below.

Figure 4.18.1 Develop Increment i Process

Outer State

TI: Project Document Files
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
T5: Project Management Files
T6: Unresolved Questions or Issues
T7: Pre-Release Software
T8: Failure Reports and Engineering Changes

I t
I I

E18: Develop Increment i

3: E4 Complete ._. for Process El8 ompletiIYes

3: 4 CmplteConditions -l.15: Code for build

Process Completed By Development team

Frevious Process Increment Development (E16)

Pre-condition None

Subsequent Process Increment Certification (E17)

2/28/91 The Cleanroom Engineering Software Development Process Page 4-65

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

Stimuli E4 Complete (13)

Responses Code for build i (15)

State Data Usage This process involves the design and code of the software product, which is the primary
content of the Software Development Files. That material is created and modified by this process. The
Project Document Files, Software Specification Files and Project Management Files are primarily used as
reference sources. The project schedule in the Project Management Files is used to determine effort and
resource allocation for the process.

Process Description Starting with the Specifications and the Software Development and Project Document
Files as primary references, develop code using the following sequence of engineering tasks. Continue until
the Completion Conditions are achieved.

1. Define Black Box by
1.1 Defining stimuli
1.2 Defining responses in terms of stimuli histories
1.3 Validating black box

2. Define State Box by
2.1 Defining state data to represent stimuli histories
2.2 Selecting state data to be maintained at this level
2.3 Modifying black box to represent repositories in terms of stimuli and the state data being

maintained at this level
2.4 Recording the type of references to state data by stimuli
2.5 Verifying the state box

3. Define Clear Box by
3.1 Defining data abstractions for each state data
3.2 Modifying the state box to represent responses in terms of stimuli, this level's state data and

invocations of lower level black boxes
3.3 Verifying the clear box

4. Repeat steps 1 - 3 until a sufficiently detailed level of clear boxes exist to permit coding to begin.

5. Develop code by
5.1 Writing code for each clear box using stepwise refinement
5.2 Individually verifying the correctness of code written by using functional verification
5.3 Verifying the correctness of the increment by conducting peer reviews.

6. Submit code to Certification team as the response from this process.

Remember to examine opportunities for reuse of boxes and code from previous products. Look for common
services and reused boxes and code inside this project.

Measurement Data Generated Effort State Data Produced

Page 4-66 The Ckeanroom Engineering Sofiwere Development Process 2/28/91

Secdoe 4: Precess Basis for Cleanroom Eapuering SET.1R70

Completion Conditions Each of the following questions must be answered affiruatively in order to
complete this process:

Black. State and Clear boxes and code
1. Have team reviews been held for all boxes, trade studies and code?
2. Have all boxes, trade studies and code passed their final review?
3. Have all project/installation standards fordesign languages and code been adhered to, including:

a) Using only the four basic structures?
b) Following language syntax conventions?
c) Providing function commentary where needed?

4. Have all pertinent reviews for this process been completed?
5. Have all action items generated during reviews that pertain to this process been completed?
6. Are the items developed consistent with the software development plan?

7. Have all black box functions been clearly defined in terms of stimulus histories, and have been
defined using an acceptable format?

8. Have all black box functions been verified to their specification (Note: A higher level clear box
is a lower level black box's specification)?

9. Does the black box function process all stimuli values, both valid and invalid?

State bxes
10. Have all state box functions been validated to be equivalent to their black box functions?
11. Does the state box function process all stimuli values, both valid and invalid leaving the state

data in a valid state?
12. Have trade studies been conducted for all state data decisions:

a) For elaboration at the selected level in the usage hierarchy?
b) Does state data abstraction have right balance between execution speed, performance and
verifiability?

13. Has transaction closure been obtained for all state boxes?

Clea bxes
14. Have all clear box functions been verified to be equivalent to their state box functions?
15. Are all interfaces in the usage hierarchy well defined?
16. Has transaction closure been obtained for all clear boxes?
17. For concurrent clear boxes, has an appropriate resolve function been defined?
18. Have all opportunities for common services been evaluated to determine proper modularization?

19. Have all procedures in the increment been verified/code read by the team?
20. Has code for all procedures been developed by stepwise refinement?
21. Have all refinements been proven:

a) Simple ones by direct assertion?
b) Complicated ones by formal proof.

2/28/91 The Cleanroom Engineering Software Development Process Page 4-67

SET-ER70 Section 4: Process Basis for Cleanroom Engineering

Overall
22. Is the increment complete according to the items listed in the Construction Plan (Volume 6 of

the Specifications)?
23. Have all state data in the Software Development Files been correctly added, modified or deleted?
24. Have all necessary measures been gathered?
25. Have all responses been submitted?
26. Have all information to be preserved been placed in the correct state data?

Keyword References
Black Box, State Box, Clear Box and Box Structures Algorithm

- Sections 9.2, 9.3 and 9.6
- Principles of Information Systems Analysis and Design (Mills, Linger, Hevner)
- "Stepwise Refinement and Verification of Box Structured Systems," EEE, CQ p.9 uz: June 1988
(Mills)
- "Designing Software Systems with Box Structures," SET Course

Code, Verification and Stepwise Refinement -
- Sections 9.4, 9.5 and 9.6
- Structured Promramming: Theory and Practice (Linger, Mills and Witt)
- "Implementing Software Systems with Stepwise Refinement and Functional Verification,"
SET Course

Review - Section 4.8

Page 4-68 The Cleunroom Engineering Software Development Process 2/28/91

"- Section 4: Process Basisfor Cleawroom Engineering SET-IR70

Section 4.19 - Process E19 - Develop Certification Plan and Tests For Increments 1..i

Process Summary The Develop Certification Tests For Increments 1..i process completes the preparation
for the certification of the software product. A usage-based testing approach is developed, which will allow
for usage testing to be conducted on the software. The process is illustrated in Figure 4.19.1, and is also
described in greater detail below.

Figure 4.19.1 Develop Certification Plan and Tests for Increments 1...j Process

Outer State

TI: Project Document Files
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
T5: Project Management Files
T6: Unresolved Questions or Issues
T1: Pre-Release Software
T8: Failure Reports and Engineering Changes

I I

E19: Develop Certification Plan
and Tests For Increments 1..i

I No

Engineering TEE
13: E4 Complete - for Process E19 o-• pletio Yes

13 4CmleConditions 112: E19 Complete
chieve

Process Completed By Certification team

Previous Processes Increment Development (E16)

Pre-condition None

Subsequent Process Increment Certification (E17)

Stimuli E4 Complete (13)

2/28/91 The Cleanroom Engineering Software Development Process Page 4.69

SET-IR70 Section 4. Process Basis for Cleanroom Engineering

Responses E19 Complete (112)

State Data Usage This process involves the creation of certification tests for the software product, which
is the primary content of the Software Certification Files. That material is created and modified by this
process. The Project Document Files, Software Specification Files and Project Management Files are
primarily used as reference sources. The project schedule in the Project Management Files is used to
determine effort and resource allocations for this process.

Process Description The Software Specification Files contain the Usage Profile Volume, which presents,
in the form of a matrix, the transition probabilities which define the probability of a user moving from any
one program state to another program state. This matrix was developed by applying a Markov model to all
the identified program states that the software can reach. Additionally, the Usage Profile Volume contains
the stimuli to the system and the corresponding distributions for each stimulus in each state. Using the matrix
and the stimuli information, the Certification team develops test cases by completing the following sequence
of engineering tasks until the completion conditions are achieved:

I. Modify the usage profile according to the Construction Plan.
2. Determine the requirements coverage of each state and each state transition.
3. Determine how many test scenarios are required to test the increment to the desired level of

reliability, given the expected rate of failures.
4. Specify the sampling scheme to be used to guide the testing for the increment. This includes the

decision of whether both control flow and data will be randomized or just control flow.
5. Develop test scripts, or test script generators that list the stimuli and stimuli values which

complete the program state transitions.
6. Develop test scenarios by creating random state transitions. Use the test scripts or script

generators to generate each program state transition. This task may include the random
generation of data.

7. Based on the test scenarios generated in task 6, compute expected outputs for each test case. The
expected results form the basis of comparison for validation of test executions.

8. Set reliability targets and failure limits for the increment.

Measurement Data Generated Effort, State Data Produced

Completion Conditions Each of the following questions must be answered affirmatively in order to
complete this process:

I. Do test scenarios reflect the operational profile of the software to be tested?
2. Can the results of executing all test scenarios be validated?
3. Have test passage criteria for the increment (such as number of test scenarios, failures or

reliability goals) been determined and corresponding test information generated?
4. Have expected results been generated, and passage criteria determined for each test case?
5. Have sufficient test scenarios been generated to certify the increment to the desired level of

reliability, given the expected rate of failure?
6. Is the increment complete according to the items listed in the Construction Plan (Volume 6 of the

Specifications)?
7. Has all state data in the Software Certification Files been correctly added, changed or deleted?

Page 4-70 The Cleanroom Engineering Software Development Process 2/28/91

Section 4: Process Basis for Cleanroom Engineering SET-IR70

8. Have all pertinent reviews for this process been completed?
9. Have all action items generated during reviews that pertain to this process been completed?

10. Have all information to be preserved been placed in the correct state data?

Keyword References
Test Script, Test Script Generator, Test Scenario

- Section 10
- "Engineering Software Under Statistical Quality Control," TEE, Softwar, November 1990
(Cobb, Mills)
- "Statistical Quality Control of Software System Development," SET Course

2/28/91 The Cleanroom Engineering Software Development Process Page 4-71

SET-1R70 Seclino 4: Process Basis for Chanroom Engineering

Page 4-72 The Clecnroon Engineering Software Developmnt Process 2/28/91 U

Secdon 4: Process Basis for Cleanroom Engineering SET-IR70

Section 4.20 - Process E20 - Update Specifications

Process Summary The Update Specifications process helps complete the Specifications, in the Software
Specification Files, as needed. The process is illustrated in Figure 4.20.1, and is also described in greater
detail below.

Figure 4.20.1 Update Specifications Process

Outer State

TI: Project Document Files
"T12: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
"T5: Project Management Files
T6: Unresolved Questions or Issues
"17: Pre-Release Software
T8: Failure Reports and Engineering Changes

I tI I

'V I

E20: Update Specifications

[Engineering Tasks o

13: E4 Complete for Process E20 oiti es 113: E20Complete

Process Completed By Specification team

Previous Process Increment Development (E16)

Pre-condition None

Subsequent Process Increment Certification (E17)

2/28/91 The Cleanroom Engineering Software Development Process Page 4.73

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

Stimuli E4 Complete (13)

Responses E20 Complete (113)

State Data Usage The Software Specification Files are modified during this process, as the intended
software system is better understood. All other state data is used as reference material. The project schedule
in the Project Management Files is used to determine resource and effort allocation for this process.

Process Description Complete (achieve Completion Conditions for) the following sequence of engineering
tasks during the Update Specifications process:

1. Integrate any necessary modifications into the present version of the Software Specification
Files, which are under configuration control. These modifications may be a result of errors,
ambiguities, new requirements, problems encountered by the Development or Certifications
teams in the course of their work, or descriptions for previously incomplete sections (e.g.,
TBD's). Publish a new version of the Specifications and distribute it to entire staff at the end of
each increment.

2. All potential changes to the Software Specification Files must be approved and consistent with
existing documentation. Use management assistance if necessary. Project manager must sign
off on all specification changes.

Measurement Data Generated Effort, State Data Produced

Completion Conditions Each of the following questions must be answered affirmatively in order to
complete this process.

1. Does the present version of the Specifications represent the precise system the Development team
is implementing and the Certification team is certifying?

2. Is the present version of the Specifications consistent with the Master Project Schedule, Project
Charter, etc.?

3. Is the present version of the Specifications consistent with the software development plan?
4. Are the Specifications for the software consistent with the rest of the system, including hardware

and human activities (for example, in terms of 2167A, these issues would need to be resolved by
the System/Segment Design Document)?

5. Have all pertinent reviews for this process been completed?
6. Have all action items generated during reviews that pertain to this process been completed?
7. Have all additions, changes or deletions from the Software Specification Files been correctly

done?
8. Have all information to be preserved been placed in the correct state data?

Keyword Reference
Review - Section 4.8
Section 8

Page 4-74 The Cleanroom Engineering Software Development Process 2/28/91

Section 4: Process Basis for Ceammroo Engineering SM.T-.170

Section 4.21 - Process E21 - Increase Understanding of Problem and Solution Domain as Required

Process Summary The Increase Understanding of Problem and Solution Domain as Required process is
an opportunity for the engineering team to better understand the project. The process is illustrated in Figure
4.2 1.1, and is also described in greater detail below.

Figure 4.21.1 Increase Understanding of Problem and Solution Domain as Required Process

Outer State

TI: Project Document Files
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
T5: Project Management Files
T6: Unresolved Questions or Issues
T7: Pre-Release Software
T8: Failure Reports and Engineering Changes

I IL
I I

E21: Increase Understanding of
Problem and Solution Domain as
Required

Engineering Task., NoY13:E4 Complete for Process E21 ompleti Yes 114: E21 Complete

13:E4Complete Conditions 10R13: Project Reports

Process Completed By Specification, Development and Certification teams.

Previous Processes Increment Development (E16) or Increment Certification (E17)

Pre-condition None

Subsequent Process Increment Development (E16) or Increment Certification (E17)

2/28/91 The Cleanroom Engineering Software Development Process Page 4-75

SET-IR70 Section 4: Process Basiw for Cleanroom Engineering

Stimuli E4 Complete (13)

Responses E21 Complete (114), Project Reports (R13)

State Data Usage The goal of this process is to increase knowledge of the system. For that reason, the
engineering files will all be modified during this process, as will Unresolved Questions or Issues, as more
questions or issues are resolved. The other state data is used as reference material in order to modify the
engineering files. The project schedule in the Project Management Files is used to determine an effort and
resource allocation for the process.

Process Description Teams will be prompted to increase their understanding of the problem and solution
domain by the appearance of unresolved questions in the state. Performing sufficient iterations of
investigation, analysis and documentation to achieve the Completion Conditions by completing the
following engineering tasks. These tasks may be conducted concurrently.

1. Read all available literature that may clarify problem and solution domain issues.
2. Solutions found internally within the engineering team will appear in the engineering team files

(TI-T5).
3. Interaction with any individuals, including those from outside organizations, that will help

increase the understanding of the problem and the solution domain may also be necessary.
4. The solutions/resolutions to these issues will be received as Documents/Working Papers or

Informal Communication.
5. Information may be received that is solicited or unsolicited. It is up to the Specification,

Development and Certification teams to examine information received in order to determine
whether material is useful for their purposes.

6. Any working papers, internal reports, etc. must be placed in the correct Project Document Files.
Project Reports are to be submitted externally for publication, as are Working Papers, which are
converted into Project Reports.

7. If any internal questions or issues are resolved, the resolutions must be recorded in state data (T6),
as well as in any other place that resolution may be preserved.

Management Data Generated Effort, State Data Generated

Completion Conditions Each of the following questions must be answered affirmatively in order to
complete this process:

1 Has the project manager determined that a sufficient understanding of the problem and solution
domains have been gained to continue with the project?

2. Have solutions that effect the entire team been disseminated?
3. Have all pertinent reviews for this process been completed?
4. Have all action items generated during reviews that pertain to this process been completed?
5. Have all information to be preserved been placed in the correct state data?
6. Have all external responses been submitted?

Keyword References
Review - Section 4.8

Page 4-76 The Cleanroom Engineering Software Devlopnent Process 2/28191

Secctiea 4: Process Basis for Ceanroom Engineering SET-IR70

Section 4.22 - Process E22 - Build System with Increment j

Process Summary The Build System with Increment j process begins the certification process for the
Certification team. Tasks include logging in components, compiling components, assembling the system,
and making reliability assessments. The process is illustrated in Figure 4.22.1, and is also described in greater
detail below.

Figure 4.22.1 Build System with Increment j Process

Outer State

TI: Project Document Files
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
T5: Project Management Files
T6: Unresolved Questions or Issues
¶1: Pre-Release Software
T8: Failure Reports and Engineering Changes

I I
I I

E22: Build System with
Increment j

15: Code for build j Engineering Task JN y

112: E19 Complete for Process E22 __.Completi Yes 115: E22 Complete
113: E20 Complete Conditions 116: Failures Found
117: E24 Complete

Process Completed By Certification team

Previous Processes Increment Certification (E17)

Pre-condition None for first iteration, Certification Complete? (C14) = FALSE on subsequent iterations

Subsequent Process Increment Certification (E17)

2/29/91 The Cleanroom Engineering Software Development Process Page 4-77

SETr.170 Section 4: Process Basis for Ceanroom Engineering

Stimuli Code for buildj (15), E19 Complete (112), E20 Complete (113), E24 Complete (117)

Responses E22 Complete (115), Failures Found (116)

State Data Usage Code is put under configuration control during this process, which means Pre-Release
Software and Failure Reports and Engineering Changes are modified. The other state data that is used during
this process is used as reference material. The project schedule in the Project Management Files is used to
determine an effort and resource allocation for the process.

Process Description Complete (achieve Completion Conditions for) the following sequence of engineering
tasks during the Build System with Increment j process:

1. Re-assess reliability of the previous version of the system, by summing execution times and
failures, accounting for all system versions, taking averages, and predicting the M'ITF for the
next version, using a Cleanroom Reliability Manager Tool. In effect, complete the reliability
analysis of the previous version of the system, in order to prepare for the new version of the
system.

2. Log all components that are a part of incrementj into the controlled code library. Log all Failure
Reports and Engineering Change Notices from the Development team into the Failure Report and
Engineering Change File. Keep an accurate count of all new or changed components, in order
to calculate engineering changes (a part of reliability assessment). This is to ensure that the state
of the system at any time is precisely described. Make sure that every modified component has
a corresponding approved Engineering Change Notice. If the cause of the modification was a
failure, the Failure Report must also be completed. Modified code that does not have a completed
Engineering Change Notice should not be logged in.

3. Compile all new or modified components. If any components do not compile, complete a Failure
Report form, and return components, the test scenario and the Failure Report form to the
Development team for correction.

4. Build the system by assembling the existing system (increments I ...j- 1) and the new components
(incrementj). If there are any failures while building the system, complete a Failure Report form,
and return components, the test scenario and the Failure Report form to the Development team
for correction.

Measurement Data Generated Effort, Library Management, Reliability

Completion Conditions Each of the following questions must be answered affirmatively in order to
complete this process:

1. Have all components necessary to build increment j been received?
2. Are all components under configuration control?
3. Have all components received been compiled successfully?
4. Have all components received been assembled successfully with the existing system into an

executable system?
5. Have all faults found during compilation and linking been noted on failure report forms and

returned to the Development team?
6. Does every changed component have a corresponding Engineering Change Notice?

Page 4-78 The Ceanroom Engineering Software Devlopment Process 2/28/91

Sectioa 4: Process Basis for Cleanroom Engiseerng SET-MR70

7. Is the process complete in regards to what is described in the Construction Plan (Volume 6 of the
Specifications)?

8. Have all information to be preserved been placed in the correct state data?
9. Has necessary metrics been gathered?

10. Have all pertinent reviews for this process been completed (for example, if the project is
following 2167A, the Function and Physical Configuration Audit needs to be completed)?

11. Have all action items generated during reviews that pertain to this process been completed?

Keyword References
Review - Section 4.8
Reliability, MTITF, Cleanroom Reliability Manager

- "Certifying the Reliability of Software," IEEE Transactions on Software Engineering, January
1986 (Currit, Dyer, Mills)
- "Engineering Software Under Statistical Quality Control," IE Sofware November 1990
(Cobb, Mills)
- "Cleanroom Reliability Manager: A Case Study Using Cleanroom with Box Structures ADL,"
CDRL 1880, IBM P.O. 308334-PJ, May 1990 (Poore, Mills, Hopkins, Whittaker)

2/28/91 The Cleanroom Engineering Software Development Process Page 4-79

SET-IR70 Secdton 4: Process Basis for Cleanroom Engineering

Page 4-80 The Clanron Engineering Software Development Process 28/91 2

Section 4: Process Basi. for Cleanroom Engineering SET.I-rO
N

Section 4.23 - Process E23 - Certify Increments 1...j

Process Summary The Certify Increments 1...j process is where the Certification team conducts the
Certification of the accumulated increments of code. This process includes executing test scenarios and
validating them. The process is illustrated in Figure 4.23.1, and is also described in greater detail below.

Figure 4.23.1 Certify Increments 1...j Process

Outer State

Ti: Project Document Files
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
TS: Project Management Files
T6: Unresolved Questions or Issues
T7: Pre-Release Software
T8: Failure Reports and Engineering Changes

I tI I

V I

E23: Certify Increments 1...j

Engineering Task ompletio Yes

115: E22 Complete Conditions 116: FailuresfFound

Process Completed By Certification-team

Previous Process Increment Certification (E17)

Pre-condition Pre-Certification Failure (Cl 1) = FALSE

Subsequent Process Increment Certification (E17)

Stimuli E22 Complete (115)

2/28/91 The Cleanroom Engineering Software Development Process Page 4-81

SET-IR70 Section 4: Process Basi for Ckeanroom Engineering

Responses Failures Found (116)

State Data Usage The Pre-Release Software is certified during this process, which means Pre-Release
Software is used and Failure Reports and Engineering Changes is modified. The Software Certification Files
are also modified to as test results appear. The other state data that is used during this process is used as
reference material. The project schedule in the Project Management Files is used to determine an effort and
resource allocation for the process.

Process Description Complete (achieve Completion Conditions for) the following sequence of engineering
tasks during the Certify Increments 1...j process:

1. Select a batch (1 or more) test scenarios at random.
2. Execute tests in the batch in a random order on the current version of the software. Record the

time of the test or the time to failure, as the case may be.
3. Validate each test scenario, comparing the actual result to the expected result for that test

scenario.
4. If the results do not agree, fill out a Failure Report.
5. If the results do agree, the test scenario passed, which means another test execution is then

validated, until the entire batch of test scenarios have been executed and validated.
6. Failures Reports, test scenarios and code are submitted together to the development team for the

resolution of any failure.
7. The Certification team may stop certification when a number of failures have been observed, all

test cases are executed, reliability goals have been met or reliability goals have not been achieved.
8. If certification is to continue and failures have been found, then failure reports are submitted to

the Development team.
9. The appropriate M=TF measure for each execution must be noted in order to allow for the

calculation of system reliability.
10. Assess reliability of the present version of the system, if desired, by summing execution times

and failures, accounting for all system versions, taking averages, and predicting the MTTF for
the next version, using a Cleanroom Reliability Manager Tool.

Measurement Data Generated Effort, Reliability

Completion Conditions Each of the following questions must be answered affirmatively in order to
complete this process.

1. Have all test executions been validated with the expected result for that test case?
2. Has testing been stopped for one of the following reasons:

a) All test scenarios executed,
b) Observed failures to be corrected by Development team,
c) Management decision?

3. Have all failures found by the certification team led to a Failure Report being put in the Failure
Report File, which will lead to Development team resolution of the Failure Report?

4. Is the process complete in regards to what is described in the Construction Plan (Volume 6 of the
Specifications)?

5. Have all additions, deletions or modifications to the state data been completed?

Page 4-82 The Ckanroom Engineering Software Development Process 2/28/91

Secdor 4." Process Basis for Cleanroom EAginering SET-IR7O

6. Have all necessary measures been gathered?
7. Have all pertinent reviews for this process been completed?
8. Have all action items generated during reviews that pertain to this process been completed?
9. Have all information to be preserved been placed in the correct state data?

Keyword References
Review - Section 4.8
Certification, Reliability, MTTF, Cleanroom Reliability Manager

- Section 10
"- "Certifying the Reliability of Software," IEEE Transactions on Software Engineering, January
1986 (Currit, Dyer, Mills)
- "Engineering Software Under Statistical Quality Control," I November 1990
(Cobb, Mills)
- "STARS - Cleanroom Reliability: Cleanroom Ideas in the STARS Environment," CDRL 001
for Task IR-70, September 1990 (Poore, Mutchler, Mills)
- "Cleanroom Reliability Manager: A Case Study Using Cleanroom with Box Structures ADL,"
CDRL 1880 for Task IR-70, May 1990 (Poore, Mills, Hopkins, Whittaker)

2/28/91 The Cleanroom Engineering Software Development Process Page 4-83

SET-1R70 Section 4: Process Basis for Cleanroom Engineering

Page 444 The Cleanroom Engineering Software Development Process 2/28/91

Section 4: Process Basis for Cleanroom Engineering SET-RT70

Section 4.24 - Activity E24- Correct Code Increment 1...j

Process Summary The Correct Code process resolves failures that the Certification team has found in the
code. The process is illustrated in Figure 4.24.1, and is also described in greater detail below.

Figure 4.24.1 Correct Code Increment 1...j Process

Outer State

TI: Project Document Files
T2: Software Specification Files
T3: Software Development Files
T4: Software Certification Files
"T5: Project Management Files
T6: Unresolved Questions or Issues
T7: Pre-Release Software
IS: Failure Reports and Engineering Changes

t ?
I It

I I

E24: Correct Code Increment 1.. .j

[Engineering Tasks116 Falurs Fundfor Process E24 4omlpletil) Yes

C16: Failures Found onditions es 117: E24Complete

chev

Process Completed By Development team

Previous Processes Increment Certification (E 17)

Pre-condition Pre-Certification Failure (Cl1) = TRUE or At Least One Failure (C12) - TRUE and
Continue With Certification (C 13) = TRUE

Subsequent Process Build System With Increment j (E22)

Stimuli Failures Found (116)

Res,:)nses. E24 Complete (117)

2/28/91 The Cleanroom Engineering Software Development Process Page 4-85

SET-IR70 Section 4: Process Basis for Cleanroom Engineering

State Data Usage Code is modified during this process, but the controlled version is not modified, which
limits change to the Software Development Files. All other state data that is used during this process is used
in a reference capacity. The project schedule in the Project Management Files is used to determine an effort
and resource allocation for this process.

Process Description Correct failures found by the Certification team, using the following sequence of
engineering tasks. The procese is completed when the Completion Conditions are achieved.

1. Get a copy of the code, test scenario and Failure Report from the Certification team.
2. Isolate the failure using the Failure Report, test scenario and code. If it is determined that a failure

did not actually occur, it must be justified.
3. Make all modifications associated with the resolution of the failure.
4. Verify the correction made, making any additional changes necessary.
5. Determine the number and severity of engineering changes made when resolving any failure.
6. Complete an Engineering Change Notice for each engineering change made to the code.
7. Integrate the change made in the code into all levels of design.
8. Return the modified code, a completed copy of the Failure Report indicating the resolution of the

failure and a completed copy of an Engineering Change Notice signed by the project manager,
to the Certification team.

9. If changes need to be made to the code that are not prompted by a Failure Report, the development
team must justify the changes, before they have been made and verified, to the Change Control
board. Only after the change has been approved, can the change be made and given to the
Certification team, along with a completed and signed Engineering Change Notice. All levels
of design must also be modified to reflect the change.

10. Remember, the code being changed is not the Pre-Release Software. It is actually a copy of code
in that library, since the Certification team is the only team to modify the code. They will integrate
code submitted by the developers during the Build System with Incrementj activity, which will
lead to the state data being modified.

Measurement Data Generated Effort

Completion Conditions Each of the following questions must be answered affirmatively in order to
complete this process.

1. Have all Software Failure Reports received by the Development team been resolved?
2. Have engineering changes made to the code been carefully noted?
3. Have all changes to the code been verified by Development team members, as well as by the

Development team as a whole?
4. Has every change made to the code also been propagated back throughout the clear, state and

black box designs?
5. Has an Engineering Change Notice been completed for every modification to the code?
6. Have all pertinent reviews for this process been completed?
7. Have all action items generated during reviews that pertain to this process been completed?
8. Have all information to be preserved been placed in the correct state data?

Keyword Reference
Review - Section 4.8
Sections 9.4, 9.5 and 9.6

Page 446 The Cleanroom Engineering Software Development Process 2/28/91

SET-IRT0

Section 5
State Data For Cleanroom Engineering

5.0 State Data Summarized

Engineers performing each of the Cleanroom Engineering processes during a software development
project work primarily with the files that contain the state data which define the current state of the project.
At each stage, the engineers find the information they require in the state data files. Then, they use their
intellect guided by the Cleanroom Engineering processes to make a next invention and record the invention
along with its rationale, and where applicable, a verification to form the new state. This process continues
until the design is complete. The engineers make small inventions followed by verifications where possible,
until the completed software and other deliverables are available. When the software is complete and
certified, the state is used to produce the final responses in terms of distribution software, maintenance
software, final specification, user documentation, archived documentation and management metrics.
During the course of the project, the project team needs to produce intermediate results used by people
outside of the project to assess progress and adequacy of the design to determine if the software will meet
its design objectives. The intermediate results need to be extracted from the state data files where they reside.

The state data then plays a very essential role in a software project. It is vital that the project team
and all other interested parties agree on a format for the files containing the state data and that the project
team be meticulous in maintaining all project information in the state data files in the prescribed form. In
this way everyone associated with the project can proceed with confidence.

A good analogy is the financial records of a company. The reason accountants can produce financial
accounts that everyone generally accepts as representing the current state of the financial progress of the
company is that they meticulously maintain files containing the state data reflecting all the transactions. The
accountants then follow processes to extract the required information for some report. The process works
because it is orderly and followed meticulously. The same can be true for software projects. The significant
difference between accounting and software development is that in accounting, the transactions that are
tracked in the state files come from outside the accounting department. In a software project, however, the
transactions reflected in the state files result from inventions made be the software engineers. But the need
for meticulous record keeping is the same.

Control must be kept over the state data. Specifically, state data should be deleted when it is
superseded, or it can easily become an overwhelming body of information. The policies as to when and how
material is removed from state data is an organizational decision that must be thought out carefully. Change
to state data needs to be done in a controlled manner. These issues both need to be considered as a part of
organizational policy, dependent on the procedures and constraints found in each organization. Both issues
are critical but are not addressed here due to the organization-specific nature of these issues.

Software project state data can be maintained in eight files as summarized in this section. The
following eight sections state requirements for the maintenance and storage of each class of state data so
individual organizations can then use this information to organize storage and maintenance procedures for
state data.

2/28/91 The Cleanroom Engineering Software Development Process Page 5-1

SET-R70 Section 5: State Data for Ckmaroom Englneering

TI: Project Document Files

The Project Document Files contain a library of documents that are relevant to the project. The
library contains six types of documents. The types are:

Project Document Index The project document index, which organizes the information
found in the Project Document Files to allow multiple views of
documents. This may be as simple as a list next to a bookshelf, or
as sophisticated as an on-line system with thesaurus and multiple
modes of access to material.

External References These are documents that areprepared by groups outside the project.
They have either been delivered to the project or have been found
by the project staff. In either case, these documents have been
stored in the document library.

Project Reports These documents are reports that have been prepared by a member
of the project team and have been published outside the project.

Working Papers These documents have been prepared by a member of the project
team and are internal to the project team. Working papers consist
of any document archived by the project team, usually by
associating a document number with the item. Only material that
has a document number with it will be kept in state.

Trade Studies These documents are specific documents that evaluate the relative
value between alternatives using a quantitative comparison scheme.
Trade studies included in the Project Document files are prepared
by the Specification team.

Project Review Minutes These documents define conclusions and action items that have

been allocated at referenced project review meetings.

T2: Software Specification Files

The Software Specification Files contain the official copy of the specifications for the software.
These files are maintained in electronic form using a desk top publishing system. The specifications
are in six volumes as follows:

1. The Mission Volume which defines the mission the software is to perform.

2. The Functional (Black Box) Specification Volume which defines an implementation-free
internal view of the software in terms of Black Box functions. The Black Box functions
define all responses in terms of stimuli histories.

3. The Functional Specification Verification Volume which justifies the correctness of the

Functional (Black Box) Specification.

Page 5-2 The Cleanroom Engineering Software Development Process 2/28/91

"Sectoa 5: tate Data for Cleanroom Engineering SET-IR70

4. The Users Reference Manual Volume which defines all the external inventions that define
the software from its user's perspective.

5. The Usage Profile Volume which defines the expected usage profile of the software by its
users in the planned usage domain.

6. The Construction Plan Volume which defines the specific modules that will be in each build
that the Development team will develop and the Certification team will certify in order to
complete the project.

Additionally, an accounting of all specification changes and change requests needs to be maintained.

This can be done as a part of the change control of the specifications or separately.

T3: Software Development Files

The Software Development Files contain eight classes of objects as follows:

Design Index The Design Index defines all references to design objects. Design objects
include state data, external stimuli, external responses, boxes, internal
stimuli, internal responses.

Trade Studies Trade studies evaluate the relative value between alternatives using a
quantitative comparison scheme. Trade studies included in the Software
Development files are prepared by the Development team.

Boxes Boxes define the Black, State and Clear Box transition formulas for each
box in the usage hierarchy.

Verifications Verifications record the verification arguments for box expansions and
code expansions.

Code Refinement Code refinements define the expansions in terms of code as Clear Box
functions are expanded into code.

Design Notes Design notes are used to record any idea or concept that the engineers feel
should be recorded as the design progresses.

Code Code is the final product of the Development team. When the Development
team is complete with an increment and satisfied that the code meets the
specifications, it turns the code over to the Certification team for
certification.

Metrics The running count of boxes developed must be collected here. This may
be done separately or as a part of the Boxes section above.

2/28/91 The Cleanroom Engineering Software Development Process Page 5-3

SET-.R70 Section 5: State Data for Cleanroom Engineering

T4: Software Certification Files

The Software Certification Files contain eight classes of objects as follows:

Certification Index All material found in the Software Certification Files is
cross-referenced in order to allow easy access. Test
scripts, sections of the sampling plan, test scenarios,
solutions and results may need to be viewed in a variety of
ways.

Certification Notes Any material that pertains to the certification of the
software, but does not fit into the other categories below,
will appear here. Specifically, notes, investigations, and
thoughts pertaining to the certification process are
considered to be certification notes.

Sampling Plan The test plan defines the sampling plan that has been
developed to estimate the reliability of the software to be
certified.

Script Generators/Test Scripts Test scripts and test script generators are descriptions of
state transitions in terms of stimuli distributions. The
scripts and script generators allow the Certification
team to generate test scenarios that have been randomly
generated for usage testing. These test scripts
fragments are used to prepare complete test scenarios.

Test Scenarios Test scenarios are scripts that guide a tester in running a
certification test. They define the next input and expected
output.

Solutions Test solutions are recorded as part of the test scenarios.

Results Results define and record the results that were produced
by the software for a named test scenario of each version
of the software for which that test case was selected to be
run. The final result is a determination of pass/fail and the
measured MTTF for the test. MTTF is recorded in units
meaningful for the software being certified.

Metrics A number of measures must be collected here. The
measures include: Test scenarios developed, Numbers of
components, Sizes of components, Numbers of new
components, Numbers of modified components, Number
of compiled components, Compilation CPU time, Number
of assembled components, system dates for each version,

Page 5-4 The Clarwoom Engineering Softwre Derelopment Process 2/28091

"- Section 5: State Data for Cleanroom Engineering SET.IR70

Execution time per test scenario, Failure report numbers
per test scenario, System version for each test scenario,
and system reliability. The data may be collected separately
or as parts of the sections above.

T5: Project Management Files

The Project Management Files contain the following six types of documents:

Project Charter The Project Charter defines the project. It is a stimulus from
management, and must be agreed to by both management and
the Engineering team.

Master Project Schedule The Master Project Schedule is the schedule given by
management to the Engineering team, which outlines the
deadlines and milestones that the Engineering team must
achieve in order to complete the project.

Engineering Activity Records The Engineering Activity Records include all information
that the Engineering team submits as status reports. This
information allows the Engineering team to manage its own
effort, as well as generating information that will allow
management to assess Engineering team progress.

Project Schedule The Project Schedule handles the allocation of all resources
(human, computer, etc.) according to the schedule organized
to produce all items during the life cycle. Of course, the
content of the schedule will change over time. The schedule
will give specific personnel explicit assignments for a scheduled
period of time. In this manner, all issues pertaining to time
with the project are archived here. It takes, as a start, the
Master Project Schedule and adds Engineering team specific
information.

Task Assignments All task assignments made to all Engineering team members
must be kept. The list of task assignments will allow any staff
member to know exactly what tasks that person needs to
perform.

Metrics The Hours per process, tasks assigned, tasks completed,
schedule modifications and productivity measures are collected
and stored here. This may be done separately or as a part of
the other sections found above.

2/28/91 The Cleanroom Engineering Software Development Process Page 5-5

SET-IR70 Section 5: State Data for Cleanroom Engineering

T6: Unresolved Questions or Issues

Each time the project team submits a question to gain more information, test a hypothesis, etc., the
question or issue is recorded in the Unresolved Question or Issues file. When the resolution is
received, it is recorded in the same file or is given a reference that can be found in the Project
Document Files.

T7: Pre-Release Software

The Pre-Release Software file is the library of software that has been released to the Certification
team by the Development team for certification. This file is maintained by the Certification team
using rigorous configuration management techniques. After the Development team has turned over
an increment to the Certification team, if the Development team requires a copy of some of the
software to remedy an observed failure, they request a copy from the Certification team. The fix for
the observed failure is returned to the Certification team by the Development team as an engineering
change which specifies the changes required to each affected software module. The Certification
team applies the changes and resumes the certification process with the new version of the software.
The Certification team maintains a library of the source code and an executable version of the
software that they use for testing. Pre-Release software files are electronic files that can be
maintained using any applicable software library system.

T8: Failure Reports and Engineering Changes

Each failure encountered by the certification as they measure the reliability of the software is
recorded in a failure report. The Software Failure Report contains the following information:

Test Scenario Identification

Description of Test Scenario

Type of Failure

Location of Failure in Scenario

Test Results Prior To Failure

Description of Observed Failure

Specification Reference For Observed Failure

Modules suspected causing failure (from information provided with the test output, if any)

Attachments as required

Page 5-6 The Cleanroom Engineering Software Developmet Process 2/28/9191

Seedo. 5: Stwe Data for Cleanroom Engineering SET-IR70

When the failure is resolved, the identification of the engineering change that is intended to fix the
failure is noted on an Engineering Change Notice. The Engineering Change Notice contains the
following information:

Identification of Failure Report(s) Fixed By This Engineering Change Notice

Textual Description of Change

Routines Modified By Engineering Change Notice

Definition Of Changes Made To Each Routine

Source of Error (Specifications, Black Box, State Box, Clear Box, Code, Previous Modification)

Statement that all required files have been adjusted to reflect change

State data is updated and used in various Cleanroom Engineering processes. Table 5.0.1 defines state
data usage by the Cleanroom process.

In the following sections, requirements are provided for the maintenance of each cl; ; f state data
along with advice on how the state data is used or prepared. The intent is that individual organizations can
then use this information to organize the best mode of state data storage by matching their resources and the
needs of the project.

5.1 Project Document File

5.1.1 Organization and Procedures

The Project Document File receives reference materials from a variety of sources. The format,
content and importance may vary a great deal from document to document. The primary needs are to keep
the organization and integrity of the information and keep it easy to reference and use. For these reasons,
the Project Document File needs to be considered a library, and treated as such.

First, an organizational scheme must be determined. Each document must be separately accessible,
in a feasible manner. For that reason, an index is necessary, which lists documents that pertain to, or are
related to, a certain topic. This could simply be a keyword list, or can be a more sophisticated thesaurus.
Additionally, the five types of documents must also be kept separate, maybe with a unique indexing scheme,
so the purpose of a specific document is not lost.

To keep the integrity of the information, all unique versions of a document must be recorded. For
example, draft and final versions of a trade study must be kept distinct, to prevent the use of incorrect
reference information. Typically, it is useful to provide a periodic inventory of the Project Document File,
in order to ensure that the correct version of any document is accessible. Access to the file must be controlled.
Of course, every member of the Engineering team needs to have access to the entire Project Document File.
Therefore, when materials are removed from the file, temporarily or permanently, they must be signed out,
to keep material accessible and enforce accountability forresources. In this way a staff member can approach

2/28/91 The Cleanroom Engineering Software Development Process Page 5-7

SET-IR70 Section 5: State Data for Cleanroom Engineering

Table 5.0.1 State Data Usage By Process

TI T2 T3 T4 T5 T6 T7 I"S

EO: Cleanroom M M M
El: Project Invocation
E2: Program Management
E3: Project Information

Management U U U U U U U U
E4: Software Solution

Specification
E5: Software Development

and Certification U U U U U U U U
Prepare Final Project

E6: Releases U U U U M U U U
E7: Maintain Project

Schedule U U U U U U U U
E8: Prepare For and

Conduct Project
Review U M M M M M U U

E9: Prepare and Submit
Project Status Reports M M M

ElO: Receive Stimuli U U U U U M
El1: Submit a Question or

Issue M U M M U
E12: Understand Problem

Domain M U M M U
E13: Understand Solution

Domain U M U
E14: Write Specifications U M U
E15: Write Construction

Plan
E16: Increment

Development
E17: Increment

Certification U U M U
El8: Develop Increment i U UT M U
E19: Develop Certification

Tests for Increments 1L.i
E20: Update Specifications U M U U U U U U
E21: Increase Understanding M U M M U U U U

of Problem and Solution
Domains as Required

E22: Build System with
Increment j U U M U M M

E23: Certify Increments L..j
E24: Correct Code U U M U U M

Increments l..j U U M U U U U

Key:
M .. .-uis that the state data is modified by the process
U means that the state data is used by the process but not modified

Page 54 The Cteanroom Engineering Software Development Process 2/28/91

Section 5: State Data for Cleanroom Engineering SET.1R70

a co-worker to look at a document which the co-worker has borrowed from the file. It is often desirable to
place time limits on the borrowing of materials to assist in the inventory process.

There are a number of ways by which the file can be made accessible. First, material may be kept
on a variety of media. External references may be on paper, while trade studies may be on-line, with project
review minutes appearing on videocassette. The easiest medium for any staff member to use is the most
valuable. Second, an Engineering team member must be made aware 9f material as it is placed in the file.
A weekly status report of all new material in the library, or a requirement for Engineering team members to
look at the updated index are possibilities. Finally, the material in the file must be placed in a location
accessible to the Engineering team members. A file, albeit very sophisticated, is useless if it is kept in a far-
away location. The file is only useful if it is used. For this reason, on-line access may be optimal for large
projects while less expensive means, like notebooks, serve the needs of medium-sized projects.

A number of schemes and rules were given which suggest a manner in which the Project Document
File can be used. "he specific manner in which it is used is dependent on the organization. Some
organizations may be able to increase use of on-line storage, while others may find an off-line scheme easier.
As long as the primary issues of organization, integrity and ease of use are enforced, the Project Document
File can be well used.

5.1.2 Content

There are a total of six items in the Project Document File. They are the Project Document Index,
External References, Project Reports, Working Papers, Trade Studies and Project Review Minutes.

Project Document Index The project document index, organizes the information found in the Project
Document Files to allow multiple views of documents. This may be as simple
as a list next to a bookshelf, or as sophisticated as an on-line system with
thesaurus and multiple modes of access to material.

External References These are documents that are prepared by groups outside the project. They
have either been delivered to the project or have been found by the project
staff. In either case, these documents have been stored in the document
library.

Project Reports These documents are reports that have been prepared by some member of the
project team and published outside of the project.

Working Papers These documents have been prepared by a member of the project team and are
internal to the project team. Working papers consist of any document
archived by the project team, usually by associating a document number with
the item. Only material that has a document number with it will be kept in
state. For example, the software development plan will appear as a working
paper in this file.

Trade Studies These documents are specific documents that evaluate the relative value
between alternatives using a quantitative comparison scheme. Trade studies
included in the Project Document files are prepared by the Specification team.

2/28/91 The Cleanroom Engineering Software Development Process Page 5-9

SET-IR70 SeCtion S: State Data for Cleanroom Engiaeedig

Project Review Minutes These documents defineconclusions and action items that have been allocated
at referenced project review meeting.

The use of and modification to each section of the Project Document File by each process is listed
in Table 5.1.1.

5.2 Software Specification Files

5.2.1 Organization and Procedures

When designing software to fulfill a mission, there are two major phases of the project as follows:

The Specification Phase where six interrelated decisions and/or inventions are made and recorded
in terms of a specification for the software. The six decisions/inventions are:

defining and agreeing on the mission the software is to fulfill (Very often the mission statement is
thought of as requirements which specify what the software shall do. In general, the mission
statement for software is derived from a larger requirement or mission in that software very rarely
is the only component of the system - there are typically people and/or devices with whom the
software works to fulfill the mission of the entire system.),

inventing the external behavior of the software in terms of (1) stimuli to the software, (2) the
responses from the software, and (3) the control structure that defines when each response should be
produced in terms of stimuli histories that will enable the software to fulfill its assigned mission(s),

justifying how that external behavior of the software will fulfill the desired mission of the software,

estimating how the software will be used to fulfill its assigned mission so a usage profile can be
established which is required to estimate how reliable the software as constructed can fulfill its
assigned mission, and

specifying the hardware/software environment in which the software will be operating.

planning the schedule for deliverables and milestones which the Engineering team will strive to
fulfill.

The Development and Certification Phase is where the software is developed in accordance with
the specification and then the software, as constructed, is measured to determine how well it conforms to the
specification when the software is used as planned.

The specification document is the document that records all the inventions and decisions made during
the specification phase and also records the arguments why the software will fulfill its intended function if
it is built in accordance with the specifications. The specification document typically goes through many
iterations as the external inventions are made and refined. It is important that each version of the
specifications be formal, well written and precise, even when the specifications are preliminary. The team
preparing the specifications should regard their task as the development of a document that is to be published.

Page 5-10 The Cleammofa Eagaetriag Software Deo lopmeat Prtoets 2/28/91

Section 5. State Data for Cleanroom Engineering SET-IR70

Table 5.1.1 Project Document State Data Usage by Process

Project
External Project Working Trade Review

Index References Reports Papers Studies Minutes

EO: Cleanroom
El: Project Invocation M M
E2: Program Management
E3: Project Information

Management
E4: Software Solution U U U U U U

Specification
E5: Software Development

and Certification
Prepare Final Project U U U U U U

E6: Releases
E7: Maintain Project U U U U U U

Schedule
ES: Prepare For and U U U U U U

Conduct Project
Review

E9: Prepare and Submit U U U U U U
Project Status Reports

ElO: Receive Stimuli M M M
Ell: Submit a Question or U U U U U U

Issue
E12: Understand Problem M U M M

Domain
E13: Understand Solution M U M M U

Domain
E14: Write Specifications U U U U U U
E15: Write Construction U U U U U U

Plan
E16: Increment

Development
E17: Increment

Certification
E18: Develop Increment i U U U U U U
E19: Develop Certificrtion U U U U U U

Tests for Increments L..i
E20: Update Specifications U U U U U U
E21: Increase Understanding M U M M M U

of Problem and Solution
Domains as Required

E22: Build System with U U U U U M
Increment j

E23: Certify Increments L..j U U U U U U
E24: Correct Code U U M U U U

Increments l..j

Key:
M means that the state data is modified by the process
U means that the state data is used by the process but not modified

2/28/91 The Cleanroom Engineering Software Development Process Page 5-11

SET-IR70 Section 5: State Data for Cleanroom Engineering

In many software projects specifications are not given the attention they require. There is a great
hurry to start building the software because so many problems are anticipated with the development. This
has the very unpleasant consequence of introducing change which causes rework, resulting in users often
settling for a product they are not really happy with. One reason for starting with the software development
early (that is, before the specifications are available) is because when the heuristic software development
methods associated with contemporary software engineering are used, it has been observed that very often
the result will not be the desired result. It is then necessary to rework the software. With this anticipation,
it is not unusual to start building software before the specifications are complete. A self-fulfilling prophecy
has been created. When the rigorous construction methods associated with Cleanroom Engineering are used,
these difficulties are not likely to occur. Another reason software construction is started early is to
accommodate bottom-up exploration to determine the look and feel of the software. In many cases this
bottom up exploration is required. It should be regarded as just that - engineering modeling. When
engineering modeling is separated from top-down design, the result is high-quality bottom-up exploration
and a high quality final product.

5.2.2 Content

There are many possible frameworks in which the specifications can be recorded. It is important that
the project team agree on a framework for the specifications and develop a formal, precise document in
accordance with the agreed-upon framework. To help project teams specify a framework for the
specification document, a six volume framework is proposed. A sample outline for the six volumes is given
in Figure 8.2.1. Each of the six documents has a specific set of purposes, which define the content and format
of the volume.

The purposes of the Mission Volume are (1) to define the mission that the software is to fulfill, (2)
to define the context in which the software will be operating and (3) to record the argument that says if the
software satisfies the defined mission, it will accomplish its part of the goals of the automation.

This User's Reference Manual volume contains a precise definition of all the inventions made by the
software designers in terms of the stimuli and responses that have been invented for the software to interface
with the environment in which it will be operating. A user with sufficient subject matter expertise should
be able to use the software by using this volume.

The purposeof the Functional (Black Box) Specification Volume is todefine an implementation-free
view of the internal structure of the software that is being designed. This implementation-free view is
obtained by specifying functions which define the conditions in terms of stimuli histories that cause the
presentation of each possible response which can be produced by the software in terms of stimuli histories.

The Functional Specification Verification Volume presents Ln argument which justifies the correctness
of the Functional (Black Box) Specification Volume. This argument is not easy to make, but serves as the
basis for accepting or rejecting the specifications. This view switches the responsibility for showing that the
specifications will solve the problem to the specification developer from the user, which is the more
traditional approach.

The Expected Usage Profile volume contains the definition of how it is anticipated the software will
be used by each,:lass of user. This definition is required to develop test scenarios in accordance with usage

Page 5-12 The Cleanroom Engineering Software Development Process 2/21/91

Section 5. State Data for Cleanroom Engineering SET-IR70

specifications so it is possible to make measurements for how reliable the software will be when it is put into
service in the environment where it is expected to operate.

The purpose of the Construction Plan volume is to develop a plan for the Development and
Certification teams, during actual product development. The plan contains the actual modules and functions
that will be a part of each increment. This will present the list of modules that the Development team needs
to produce for any increment, and will outline the functionality available for the Certification team to certify
for an increment.

The use of and modification to each section of the Software Specification Files by each process is
listed in Table 5.2.1.

5.2.3 Change Control

Controlling change in the specifications is just as important as change control with code. For this
reason, specifications must also be under configuration management, with all changes being approved by
the specifications team, with outside management assistance, if necessary. Additionally, the project
manager should be required to sign any approved request to change the specifications. If necessary, the
specifications may need to be maintained in a secure manner (on-line with passwords, or in a locked desk)
to prevent unauthorized changes, but these measures should be decided on a case-by-case basis.

5.3 Software Development Files

5.3.1 Organization and Procedures

The Software Development Files serve as the repository for all material used in the design and
implementation of the software. Each type of material has a desired structure which, if followed, will allow
the material to be more easily used.

With Cleanroom, software is developed in a top-down, iterative process with verification between
each inventive step. To facilitate this iterative process, it is important that the material be stored so the
relationship between all design objects can be easily determined. The design index serves this purpose,
allowing a user of the file to find state data, external and internal stimuli and responses, boxes and their uses.

Every design object must be clearly and uniquely defined. The process is more involved than just
ensuring that no two final boxes have the same name. Multiple versions of the same box, which may appear
when a box goes through a number of reviews, must be marked with a version number. The same notation
must be done for code refinements, code and verifications. If boxes, verifications and code are kept on line,
the version numbers may be handled by configuration management systems. It is of utmost importance that
all Development team members look at the same version of a design object.

As design objects are accepted, by reviews or verification, old versions may be deleted or removed.
This minimizes the extra complexity of searching through dated and obsolete materials. Which versions are
deleted is up to the Engineering team manager, and will probably be set as policy early in the project.

Code has a special requirement. Once it is submitted to the Certification team, it must be deleted from

the Software Construction File (although an off-line copy may be kept). This prevents accidental

2/28/91 The Cleanroom Engineering Software Development Process Page 5-13

SET.IR70 Section 5: State Data for Cleanroom Engineering

Table 5.2.1 Software Specification State Data Usage by Process

Specifications Metrics

EO: Cleanroom
El: Project Invocation
E2: Program Management
E3: Project Information

Management
E4: Software Solution U U

Specification
E5: Software Development

and Certification
Prepare Final Project U U

E6: Releases
E7: Maintain Project U U

Schedule
E8: Prepare For and U

Conduct Project
Review

E9: Prepare and Submit U M
Project Status Reports

ElO: Receive Stimuli
Ell: Submit a Question or U

Issue
E12: Understand Problem U

Domain
E13: Understand Solution U

Domain
E14: Write Specifications M
E15: Write Construction M

Plan
E16: Increment

Development
E17: Increment

Certification
E18: Develop Increment i U
E19: Develop Certification U

Tests for Increments 1..i
E20: Update Specifications M
E21: Increase Understanding U

of Problem and Solution
Domains as Required

E22: Build System with U
Increment j

E23: Certify Increments L..j U
E24: Correct Code U

Increments L..j

Key:
M means that the state data is modified by the process
U means that the state data is used by the process but not modified

Page 5-14 The Cleanroom Engineering Software Development Process 2=2"/l1

Secdon 5: State Data for Cleanroom Engineering SET-IR70

modifications to controlled code. For example, if a developer makes a failure correction to a version of code
that exists in the non-controlled library, which may have been modified in an experimental manner, that
experimental change may go into the controlled library without an associated Engineering Change. As will
be stated in the description for Pre-Release Software (T8), Development team members can get copies of
the code at any time, but change can be controlled by the Certification team, by not updating routines unless
Engineering Changes are attached to them. This minimizes accidental modifications to controlled code.

The material in the Software Development Files should not be viewed by the Certification team.
Seeing a design or code for a part of the system may bias the certification process, which will also bias the
reliability estimate. Efforts need to be made to prevent these accidental biases.

5.3.2 Content

The Software Development Files are developed by the Development Team using the engineering
practices described in Section 9. They contain:

Design Index
The Design Index can be on-line or off-line. An automated means of updating the Design Index minimizes
the time spent manually managing the Index. A convenient way to access the entire design trail is critical
when using Cleanroom; only by having the complete design trail can one determine what does or does not
need to be modified. Typical contents of Design Index for each Design Object appear as follows:

State Data
Name
Stimuli history represented
Definition of abstraction
Where computed box name

sub-function name
Where used box name

sub-function name
External Stimuli

Name
Where defined users reference manual reference
Where processed box name

sub-function name

External Responses
Name
Where defined users reference manual reference
Where used box name

sub-function name
Internal Stimuli

Name
Purpose
Where defined box name
Where used box name

2/28/91 The Cleanroom Engineering Software Development Process Page 5.15

SET-1R70 Section 5: State Data for Cleanroom Engineering

Internal Responses
Name
Purpose
Where defimed box name
Where used box name

Boxes
Name
Purpose
Level in usage hierarchy
Parent Box(es)
Box(es) used
State Data used
Responses used
Stimuli used

Trade Studies
Trade studies are a critical part of engineering. Systems engineers conduct and document many trade studies.
Software developers do not use trade studies as frequently. With Cleanroom practices, software developers
now have the opportunity to improve their engineering by conducting trade studies. Software developers
will want to use the format for trade studies that have been adopted by their organization.

Boxes
Boxes define the Black, State and Clear Box transition formulas for each box in the usage hierarchy. Figures
9.2.1 through 9.2.3 illustrate the box structure algorithm and the templates for Black, State and Clear Boxes.
This section of state data must preserve the entire specification and design trail; i.e., the content of every
iteration of the Box Structures must appear here.

Verifications
Verifications record the verification arguments for box expansions and code expansions. Figures 9.5.1 and
9.5.2 present the Correctness Theorem, and the rules for functional verification of the basic structures. Every
program can be developed from the basic structures, thus only a limited number of verification constructs
are necessary.

Code Refinement
Code refinements define the expansions in terms of code as Clear Box functions are expanded into code.
Figures 9.4.1 anGi 9.4.2 illustrate the concept of code refinement.

Design Notes
Design notes are used to record any idea or concept that the engineers feel should be recorded as the design
progresses.

Code
Code is the final product of the Development team. When the Development team is complete with an
increment and it is satisfied that the code meets the specifications it turns the code over to the Certification
team for certification. Figure 9.4.4 defines a set of rules for documenting code.

Page S-16 The ClMeroon Engineering Software Deviopmset Process 2/28/91

Section 5: State Data for Cleanroom Engineering SET-MR70

Metrics
The total numbers of boxes produced must be tracked in order to assist the process and product assessment
and improvement activities. This may also be handled in some automated means in the "Boxes" section of
this file.

Rules and templates such as those defined in Section 9 need to be tailored to each organization.
Initially, an organization may want to start with these rules and templates, eventually extending them to meet
their special needs.

The use of and modification to each section of the Software Development Files by each process is
listed in Table 5.3.1.

5.4 Software Certification Files

5.4.1 Organization and Procedures

The Software Certification Files are developed by the Certification Team using the engineering
practices described in Section 10. The Software Certification Files serve as the repository for all of the
material used in the certification of the software. Each type of material has a desired structure, which if
followed, will allow the material to be more easily used.

The Software Certification Files need to be kept organized for a number of reasons. First, the testing
approach used is a statistical testing approach. If materials are not kept in an organized manner, data may
be lost that will bias the certification estimates. Additionally, the entire approach must be clearly defined
and followed to ensure that the test scenarios are generated according to the operational profile of the system.
Second, each test scenario, with its corresponding result, must be preserved across test executions to preserve
data necessary for reliability estimates, to determine the status of the certification effort, and to keep control
of retests. Finally, since the test process is solely the concern of the Certification team, material must be kept
in a manner which will keep the security of the material. A developer who unintentionally sees a test scenario,
may bias his/her development effort, to account for a specific test scenario. This also biases the reliability
estimate, since the test case is no longer random.

5.4.2 Content

Certification Index
The certification index may appear as follows. The intent is for the Certification team to have easy access
to all of the certification information.

Test Script a
Used In

Test Scenario a
Test Scenario b

Test Script b

2/28/91 - The Cleanroom Engineering Software Development Process Page 5-17

SET-IR70 Section 5: State Data for Cleanroom Engineering

Table 5.3.1 Software Development State Data Usage by Process

Design Trade Verifi- Code Design
Index Studies Boxes cations Refinement Notes Code Metrics

EO: Cleanroom
El: Project Invocation
E2: Program Management
E3: Project Information

Management
E4: Software Solution U U U U U U U U

Specification
E5: Software Development

and Certification
Prepare Final Project U U U U U U U U

E6: Releases
E7: Maintain Project U U U U U U U U

Schedule
E8: Prepare For and U U U U U U U

Conduct Project
Review

E9: Prepare and Submit M U U U U U M
Project Status Reports

ElO: Receive Stimuli
Eli: Submit a Question or U U U U U U U U

Issue
E12: Understand Problem M M M

Domain
E13: Understand Solution M M M

Domain
E14: Write Specifications
E15: Write Construction

Plan
E16: Increment

Development
E17: Increment

Certification
E18: Develop Incremen i M M M M M M M
E19: Develop Cerdfication

Tests for Increments l..i
E20: Update Specifications U U U U U U U U
E21: Increase Understanding M M U U U U U U

of Problem and Solution
Domains as Required

E22: Build System with
Increment j

E23: Certify Increments 1..j
E24: Correct Code M M M M M M M

Increments l..j

Key:
M means that the state data is modified by the process
U means that the state data is used by the process but not modified

Page 5-18 The Clanroom Engineering Software Development Process 2/28/91

Sedeo 5: State Data for Cleanroom Engineering SET.1R70

Script Generator a
Used In

Test Scenario a
Test Scenario b

Script Generator b

Test Scenario a
Increment number x
Uses

Script Generator a
Script Generator b

Contains
Test Script a
Test Script b

Solution
Solution a

Result
Result a

Test Scenario b

Certification Notes
Certification notes include any item generated by the Certification team. The notes include such topics as
the results of investigations, thoughts, and ideas pertaining to the certification of the software product.

Sampling Plan
The sampling plan defines how to draw usage tests from the entire population of possible uses in order to
certify the software. See Section 10.1 for factors that influence the preparation of the sampling plan.

Script Generators/Test Scripts
Script generators are executable code components which generate test scripts. Generators are necessary
when a specific state transition can be completed in a variety of ways, due to variability of data, or different
possible stimuli. Figure 10.2.2 shows a sample test script generator.

Test scripts are the actual commands that result in state transitions in a test scenario. These are actual stimuli
sequences. Figure 10.2.3 presents a sample test script.

Test Scenarios
A test scenario is developed from a sequence of randomly generated state transitions. The state transitions
can be selected using a random number generator. The test scenario is a sequence of test scripts which
implement the above-mentioned state transitions. Figure 10.2.4 presents an example for a test scenario.

Solutions
A solution is the expected result of a test scenario. Figure 10.3.1 provides a typical form for recording the
solution manually. The exact format of the form will depend on the software being certified. In many

2/28/91 The Cleanroom Engineering Software Development Process Page 5-19

SET-IR70 Section 5: State Data for Cleanroom Engineering

instances, it will be worth the effort to develop a means to record the information in an electronic file so it
can be easily compared to the results.

Results
Results can take a number of forms. It is critical that the Certification team gather all external responses that
are being generated. This may include capturing displays, impulses on a bus, and printer output. If the data
can be recorded electronically during execution it may be be easier to appraise solutions.

Metrics
A number of measures must be kept track of in this section. The measures include: Test scenarios developed,
Numbers of components, Sizes of components, Numbers of new components, Numbers of modified
components, Number of compiled components, Compilation CPU time, Number of assembled components,
system dates for each version, Execution time per test scenario, Failure report numbers per test scenario,
System version for each test scenario, and system reliability. These measures can be collected in an
automated or manual manner as parts of the other sections above in the Software Certification Files, or they
may be kept specifically in this section.

The use of and modification to each section of the Software Certification Files by each process is
listed in Table 5.4.1.

5.5 Project Management Files

5.5.1 Organization and Procedures

The material in the Management Files is publicly accessible; i.e., any member of the Engineering
team may look at the Management Files. The way that much of the material in the Management File will
appear is not the choice of the Engineering team. Since much of the material is given by management as a
stimulus to the Engineering team, it is not possible for the Engineering team to force a certain structure to
be required for a stimulus. Additionally, the Project Status Reports, which are a response from the
Engineering team, will probably be in a certain format, that the organization desires.

The project schedule will initially use the Master Project Schedule in order to set management-
directed external milestones for reviews, deliverables, etc. Subsequently, the Engineering team will need
to set internal deadlines for reviews, internal deliverables, build schedules and activity milestones. The
schedule will be modified as the project continues.

In addition to dates, the project schedule also needs to outline the use of personnel for the project.
Engineering team members need to be assigned to specific tasks over a specified period of time. Allocation
of staff to tasks will also change as the project continues, so the schedule needs to maintained in an easy-to-
change format.

The project schedule is needed by all staff members during every activity in order to determine the
resources at one's disposal at any moment. The project schedule is modified by the Engineering team
manager, as the manager is the person responsible for the project. It may appear on-line or off-line,
whichever is more convenient for the organization.

Page 5-20 The Cleanroom Engineering Software Development Process 2/28/91

.- Section 5: State Data for Cleanroom Engineering SET-ER70

Table 5.4.1 Software Certification State Data Usage by Process

Cert. Cert. Sampling Test Test
Index Notes Strategy Scripts Scenarios Solutions Results Metrics

EO: Cleanroom
El: Project Invocation
E2: Program Management
E3: Project Information

Management
E4: Software Solution U U U U U U U U

Specification
E5: Software Development

and Certification
Prepare Final Project U U U U U U U U

E6: Releases
E7: Maintain Project U U U U U U U U

Schedule
ES: Prepare For and U U U U U U U U

Conduct Project
Review

E9: Prepare and Submit M U U U U U U M
Project Status Reports

El0: Receive Stimuli
El1: Submit a Question or U U U U U U U U

Issue
E12: Understand Problem M M

Domain
E13: Understand Solution M M

Domain
E14: Write Specifications
E15: Write Construction

Plan
E16: Increment

Development
E17: Increment

Certification
E18: Develop Increment i
E19: Develop Certification M U M M M M

Tests for Increments l..i
E20: Update Specifications U U U U U U U U
E21: Increase Understanding M M U U U U U

of Problem and Solution
Domains as Required

E22: Build System with M M U
Increment j

E23: Certify Increments L..j M U U U U M U
E24: Correct Code U U U U

Increments 1..j

Key:
M means that the state data is modified by the process
U means that the state data is used bv the orocess but not modified

2/28/91 The Ckeanroom Engineering Software Development Process Page 5-21

SET-IR70 Section 5: State Data for Cleanroom Engineering

The use of a project schedule implies that there is a concept of time and the Engineering team, as well
as outside organizations, understand and use this concept. It is a reasonable assumption that the Engineering
team looks at watches and calendars regularly, and can relate times and dates to the project schedule.

5.5.2 Content

Much of the data appearing in this file is not determined by the Engineering team. For example: The
Master Project Schedule and the Project Charter's formats are provided by the project sponsor who gives
the two items to the Engineering team. The project schedule, which is merely a more detailed Master Project
Schedule is normally pre-determined by management. The Engineering activity records need to appear in
the form requested by the project sponsors or the organizations management.

The project schedule consists of a calendar and a number of task assignments. The project displays
the tasks, reviews, milestones, etc., that occur on any specific date. Additionally, task assignments that are
active on a specific date may be listed. Task assignments include the project, process (EO-E24), task, effort
description, deliverables and special instructions. There are typically 20 + 5 * (number of increments)
different processes for the project. The five results from the fact that there are five processes instantiated
for each increment (which means those processes are identified by process name and increment number).
The number of tasks based on each process is a management decision. A typical task assignment for a manual
system is shown in Figure 5.5.2.1. Automated systems will provide different forms with the similar content.

Figure 5.5.2.1 Task Assignment

TASK ASSIGNMENT

Project:
Process:
Increment:

Task:

Task Dates: From: To:
Staff hours to be expended on task:
Assigned to:

Deliverables:

Special Instructions:

Page 5-22 The Cleanroom Engineering Software Development Process 2/28/9191

'M26 3W SOPTMURE TE U..OLOQ FOR ADAPTABD'
CSTARS) PROOAN THE CL.. (U) IMN FEDERA SECTOR DIV

GAITHERSBURG ND R H COMO ET AL. 23 FED 91. 0?01-0O1iiLASI[IhU C-Eiiuuuuui-002 l
EhmhhmmhEh,7mhhh

SET.IR70 Section 5:. State Data for Clanroom Engineering

Table 5.5.1 Project Management State Data Usage by Process

Master Engineering
Project Project Activity Project Task
Charter Schedule Records Schedule Assignments Metric-

EO: Cleanroom U
El: Project Invocation M M U
E2: Program Management U
E3: Project Information U

Management
E4: Software Solution U U U U U U

Specification
E5: Software Development U

and Certification
Prepare Final Project U U U U U U

E6: Releases
E7: Maintain Project U U M M U

Schedule
E8: Prepare For and U U U U U U

Conduct Project
Review

E9: Prepare and Submit M U U M
Project Status Reports

ElO: Receive Stimuli M M M U
El1: Submit a Question or U U U U U U

Issue
E12: Understand Problem U U U

Domain
E13: Understand Solution U U U

Domain
E14: Write Specifications U U U U U U
E15: Write Construction U U U U

Plan
E16: Increment U

Development
E17: Increment U

Certification
E18: Develop Increment i M U U U
E19: Develop Certification U U U

Tests for Increments L..i
E20: Update Specifications U U U U
E21: Increase Understanding M U U U

of Problem and Solution
Domains as Required

E22: Build System with U U U
Increment j

E23: Certify Increments 1..j U U U
E24: Correct Code M U U U

Increments 1..j

Key:
M means that the state data is modified by the process
U means that the state data is used by the process but not modified

Page 5-24 The Cleanroom Engineering Software Development Process 2/28/91

"Section 5: State Data for Cleanroom Engineering SET-ER7O

Figure 5.6.1 Issue/Question Form

Issue/Question Form

Name of Staff Member:. Date:

Project Name: I/Q Form Number:

Team: Specification / Development / Certification

Section 1: Question/Issue

Question/Issue needing resolution:

Check if additional question/issue materials are attached to this form:

Form submitted to:

Section 2: Resolution

Name of Staff Member:. Date:
Question/Issue resolved (check one): Orally: - Textually:

Briefly describe resolution (attach additional sheets as needed):

Known ramifications of resolution:

Check if additional resolution materials are attached to this form:

2/28/91 The Cleanroom Engineering Software Dewelopaent Process Page 5-25

SET-IR70 Secdon 5: State Data for Cleanroor Engineerng

Table 5.6.2 Questions or Issues State Data Usage by Process

Questions or
Issues Metrics

EO: Cleanroom
El: Project Invocation M
E2: Program Management
E3: Project Information

Management
E4: Software Solution U U

Specification
E5: Software Development

and Certification
Prepare Final Project U U

E6: Releases
E7: Maintain Project U

Schedule
E8: Prepare For and U

Conduct Project
Review

E9: Prepare and Submit U M
Project Status Reports

El0: Receive Stimuli M
Ell: Submit a Question or M

Issue
E12: Understand Problem

Domain
E13: Understand Solution

Domain
E14: Write Specifications
E15: Write Construction

Plan
E16: Increment

Development
E17: Increment

Certification
E18: Develop Increment i
E19: Develop Certification

Tests for Increments L..i
E20: Update Specifications U
E21: Increase Understanding U

of Problem and Solution
Domains as Required

E22: Build System withý
Increment j

E23: Certify Increments l..j
E24: Correct Code

Increments 1..j

Key:
M means that the state data is modified by the process
U means that the state data is used by the process but not modified

Page 5-26 The Cleanrooon Engineering Software Development Process 2/28/9191

Section 5. State Data for Cleanroom Engineering SET-1R70

5.7.2 Change Control

When the source code for some increment is received by the Certification team from the Development
team as a result of their completion of E18: Develop Increment i, the software as received is placed under
configuration control. It is then compiled and any observed failures are recorded on Failure Reports by the
Certification team. The Failure Report is returned to the Development team for correction. The
Development team finds the reason for the failure and prepares an Engineering Change Notice (ECN) which
records the reason for failure and defines the fix to the software which is intended to eliminate the failure.
When the Development team is satisfied with the fix, the ECN is sent to the Certification team. Following
acceptance of the ECN, the source code being maintained under configuration control is updated with the
fix as supplied on the ECN. This process continues until the software successfully compiles.

Once the software successfully compiles the source code for the present increment, the compiled
software for the present increment is assembled with the compiled software for prior increments in
accordance with the assembly instructions received from the Development team. If failures are encountered,
a Software Failure Report is prepared. The Software Failure Report is sent to Development team for
resolution. The Development team records the fix in an ECN. Once the Development team is satisfied the
fix is proper, the ECN is returned to the Certification team. The software and/or the assembly instructions
are modified as instructed in the ECN. This process continues until the software is correctly assembled.

When the software is fully assembled, the Certification team commences measuring the reliability
of the software by testing the software using the testing plan previously prepared. The Certification team
records any observed failures on Software Failure Reports. When the Certification team feels so many
failures have been observed that further testing has reached a point of diminishing returns, testing is
suspended and failure reports are sent to the Development team for resolution. As the Development team
finds fixes to remedy the observed failures, ECN's are prepared. Once the Development team is satisfied
with the changes, the ECN's are returned to the Certification team. The Certification team then updates the
software which is under configuration control. The process of compiling, assembly and testing is repeated.
The process continues until the software is certified.

In addition to the Certification team finding problems, the Development team may also uncover
difficulties or find an opportunity for an enhancement to the Pre-Release Software by reading or otherwise
observing the code, or implementing a change in the requirements or specifications. In these cases, the
Development team completes an ECN and submits it to a Configuration Control Board who makes a
determination if the recommended change should be accepted or rejected. If the recommended change is
accepted, the ECN and the modified code is forwarded to the Certification team for incorporation into the
software and for testing.

The Certification team archives Failure Reports as they are prepared and Engineering Change
Notices as they are received for analysis and tracking.

5.7.3 Content

Figure 9.4.4 defines a set of rules for code. These rules need to be tailored to each organization.
Initially, an organization might want to start with these rules and eventually extend them to meet their special
needs.

2/28/91 The Cleanroom Engineering Software Development Process Page 5.27

SET-IR70 Section 5: State Data for Cleanroom Engineering

The use of and modification to the Pre-Release Software state data by each process is listed in
Table 5.7.1.

5.8 Failure Reports and Engineering Changes

5.8.1 Organization and Procedures

Failure Reports and Engineering Changes should each have a separate form. These forms will be
filed separately, but cross-referenced. The purpose of these files is to determine what changes have been and
remain to be made to the code. Additionally, the extent of failures or changes will be understood, as that issue
may affect the development. Finally, failure and change reports must be preserved to allow for reliability
estimations, since the estimations are based on the number of engineering changes made. These forms may
exist electronically or on paper.

All forms must be completed correctly and signed. Change control of the code is of the greatest
importance (just as critical as change control of the specifications), extreme effort must be made to guarantee
that the integrity of the controlled code library is preserved.

The process by which the Software Failure Reports and Engineering Change Notices work is
described in Section 5.7.1, in the sub-section titled "Change Control."

Typical Software Failure Reports and Engineering Change Notices are shown in Figures 10.4.1 and
10.6.1, respectively.

The use of and modification to the Failure Reports and Engineering Changes state data by each
process is listed in Table 5.8.1.

Page S-28 The Cleanrom Engineerng Software Development Process 2/28/91

Section 5: State Data for Cleanroom Engineering SET-IR70

Table 5.7.1 Pre-Release Software State Data Usage by Process

Software

EO: Cleanroom
El: Project Invocation
E2: Program Management
E3: Project Information

Management
E4: Software Solution U

Specification
E5: Software Development

and Certification
Prepare Final Project U

E6: Releases
E7: Maintain Project U

Schedule
E8: Prepare For and U

Conduct Project
Review

E9: Prepare and Submit U
Project Status Reports

ElO: Receive Stimuli
Ell: Submit a Question or

Issue
E12: Understand Problem

Domain
E13: Understand Solution

Domain
E14: Write Specifications
E15: Write Construction

Plan
E16: Increment

Development
E17: Increment

Certification
E18: Develop Increment i
E19: Develop Certification

Tests for Increments 1..i
E20: Update Specifications U
E21: Increase Understanding U

of Problem and Solution
Domains as Required

E22: Build System with M
Increment j

E23: Certify Increments L..j U
E24: Correct Code U

Increments L..j

Key:
M means that the state data is modified by the process
U means that the state data is used by the process but not modified

2/28/91 The Cleanroom Engineering Software Development Process Page 5-29

SET-IR70 Section 5: State Data for Cleanroom Engineering

Table 5.8.1 Failure Reports and Engineering Changes State Data Usage by Process

Failure Reports and
Engineering Changes

EO: Cleanroorn
El: Project Invocation
E2: Program Management
E3: Project Information

Management
E4: Software Solution U

Specification
E5: Software Development

and Certification
Prepare Final Project U

E6: Releases
E7: Maintain Project U

Schedule
E8: Prepare For and U

Conduct Project
Review

E9: Prepare and Submit U
Project Status Reports

ElO: Receive Stimuli
Ell: Submit a Question or

Issue
E12: Understand Problem

Domain
E13: Understand Solution

Domain
E14: Write Specifications
E15: Write Construction

Plan
E16: Increment

Development
E17: Increment

Certification
E18: Develop Increment i
E19: Develop Certification

Tests for Increments 1..i
E20: Update Specifications U
E21: Increase Understanding U

of Problem and Solution
Domains as Required

E22: Build System with M
Increment j

E23: Certify Increments L..j M
E24: Correct Code U

Increments l..j

Key:
M means that the state data is modified by the process
U means that the state data is used by the process but not modified

Page 5.30 The Clemnroom Engineering Software Development Process 2/28/9191

SET-1170

Section 6
Responses For Cleanroom Engineering

In Section 3, thirteen responses to the software engineering process were defined as follows:

RI Distribution Software
R2 Maintenance Software

The software as designed, implemented and certified as meeting the requirements can be regarded
as the primary response of the Cleanroom Engineering project. This software is packaged in two forms. The
first is the software ready for distribution - the Distribution Software. The second is the software ready for
the organization that is responsible for archiving and maintaining the software - the Maintenance Software.

R3 Final Specification
R4 User Documentation
R5 Archived Documentation

The software must be documented in several forms as follows:

1. The Final Specification defines what the software does from both the user's standpoint and the
computer's vantage point and the usage profile which the software has been designed and
certified to satisfy.

2. The User Documentation which is employed by users to help utilize the software. The format
and extent of User Documentation depends on the requirements. Typically, it may include
reference manuals, tutorial manuals, education material, marketing documentation.

3. The Archived Documentation represents the final state of the Cleanroom Engineering
development process when the software is complete and certified. From one point of view,
software development can be regarded as developing the state during the entire software solution
specification, development and certification process; and once the software is complete, the
converting of the state into the responses as defined above. The Archived Documentation is a
permanent set of documentation that represents the final state. The extent and formality of the
Archived Documentation is specified by the requirements.

R6 Project Review Documentation

Project reviews are meetings between the Engineering team and one or more outside organizations.
Engineering teams prepare documentation for use at project reviews. Project reviews are typically held for
projects at critical points in the life cycle. In this way project sponsors and/or management can assess
progress and the degree to which the software as it is being designed meets the needs which are to be satisfied
by the software. Additionally, project reviews can be called by project management when they see a need,
or on a schedule, such as a monthly status review. The exact nature of the documentation that is produced
for these reviews typically depends on the nature of the development contract or the customs of the
organization. For example, if the contract is being developed under a government contract, the reviews may
be specified by 2167 or 2167A. Other organizations have their own specifications for project review
documentation. This project review documentation must be produced at the specified time in the specified

2&28/91 The Cleanroom Engineering Software Development Process Page 6-1

SET-IR70 Section 6: Responses for Cleanroom Engineering

format from the state data. This documentation is produced at many different points in the project life cycle.
In many cases, the development organization is free to propose a format for Project Review Documentation.

R7 Project Schedule

The Project Master Schedule is updated with schedule information received from the Cleanroom
Engineering Team. The Project Schedule is the response which provides this information. It is a published
description of the schedule of milestones and deliverables between the Engineering teams and between the
Engineering team and management. The dates given in the Project Schedule commit the Engineering team
to a schedule for production of the system, to which "management" can hold the Engineering team
accountable.

R8 Management Metrics

Measurements of engineering processes are collected routinely. The measurements are used by
management to control the development and to study development performance to find improvements for
future projects. Individual managements will want to collect different information; therefore, the exact
metrics collected will differ from project to project. These measurements as defined for permanent archiving
are referred to as Management Metrics.

R9 Project Status Reports

Project Status Reports are distributed to management based on the schedule dictated in the Master
Project Schedule. Information in the reports allows management to assess the status of the project in regards
to budget and resources and make modifications to the project as necessary.

RIO Externally Submitted Questions or Issues

During a project, there are often questions or issues that cannot be answered by members of the
Certification, Development or Specification teams. These questions or issues are submitted to organizations
outside the engineering task in order to be resolved. The issues are resolved, with their response being either
Documents/Working Papers or Informal Communication.

R11 Schedule Change Request

During a project, the Engineering team may determine that a milestone or deliverable may not be
completed on schedule. For these types of situations, the Engineering team must have the opportunity to
request a schedule modification. This request will prompt management to analyze the issue and determine
whether to grant a schedule change. If the change is accepted, the Engineering team will receive a new Master
Project Schedule as a stimulus.

R12 Suspend Project Pending Management Decision

During a project, the case may arise where the Engineering team believes the project must be
suspended; for example, upon determining that the code does not meet the specifications, or that the
specifications do not meet the requirements. Since management has the final decision as to whether the

Page 6-2 The Cranreoom Engineering Software Developnent Process 2/28/91

"Secd"a 6: Responses for Cleanroom Engineeriag SET-ER70

project should be suspended, this response is a prompt to management to closely assess the project and make
a decision as to how the project will continue or whether the project should be reorganized or cancelled.

R13 Project Reports

During a project, the Specification, Development or Certification teams may produce a document
that has use outside of the engineering team. These documents are published outside the engineering team,
so other individuals in the organization can use the knowledge gained by those members of the Engineering
team.

In some cases, a project sponsor will decide that some other responses are necessary, in addition to
the ones that appear in this section. These responses are not addressed because it would be impossible to
identify the full range of potential responses. The responses appearing below are a fundamental set of project
responses. Some additional responses can be accounted for by viewing them as material that must be a part
of a review. As reviewed material, it will be delivered to the sponsor. For otherresponses, it may be necessary
to tailor this document for the specific organization and project in order to account for such requests.

Due to the nature of the state data invented for the process and the nature of Cleanroom Engineering
practices once the project is complete it is very easy to prepare all project responses.

Nine of these responses (R1, R2, R3, R4, R5, R6, R7, R8 and RI 3) are directly or indirectly derived
from state data. Some of these responses will be reformatted to respond to organization and user
requirements and others will just be duplicates of the final state.

R1 Distribution Software Since one of the first things the Certification team must do with the
software is install the software in the target environment for execution,
they have been assembling the software from distribution format
since executing the very first increment. Therefore, the distribution
software is directly available in state.

R2 Maintenance Software The software has been maintained during the entire development
cycle so again the maintenance software is directly available in state.

R3 Software Specifications Directly available in state. The specifications have been repeatedly
published in distribution form so they are available both in printed and
electronic formats.

R4 Archived Documentation This response is an archived copy of the five engineering state data
files so they are available for future reference.

R5 User Documentation Very often it is necessary to provide documentation in forms other
than a User's Reference Manual. In those cases these other forms of
documentation need to be prepared from the specifications and the
authors of these documents must show they are equivalent to the
specifications. Once they are written, they will be available. It is not
possible to define in advance how such documentation will be

2/28/91 The Cleanroom Engineering Software Development Process Page 6-3

SET-IR70 Section 6: Responses for Cleanroom Engineering

formatted because that will differ for each project depending on the
target audience for the software.

R6 Project Review Documentation The format of these documents will depend on the wishes of the
project.sponsor and the review team. But, as discussed in Section
3.10, this review documentation must be obtained directly and entirely
from the state.

R7 Project Schedule Project schedules are contained in the state. The format in which
someone may want schedule information will vary. The process used
to maintain the project schedule should be capable of meeting the mix
of report formats that people will desire.

R8 Management Metrics The organization will have defined what management metrics are to
be collected so all metrics which will be available are in state.
Provided a good data base system is selected for storing metrics
information formatting, the information to satisfy individual requests
will not be difficult. The data base capabilities defined for each
project should be compatible with organization-wide standards so it

will be easy to archive the metrics for future analysis. If this is not the
case, it will take some effort to reformat the data.

R 13 Project Reports The project reports are written from information found in state data
files and are also stored in state data. The format of the paper in state
data is the same as its form as a response. Working papers can also
be converted into project reports and published as such.

The other responses are simple paper forms as follows:

R9 Project Status Report Most organizations have a form in which status reports are to be
submitted. Status reports are typically memos written at a predefined
interval to indicate progress against goals, problems encountered and
other matters of interest to the organization.

R10 External Issues/Questions Forms that can be used for this purpose were defined in Section 5.6.

RI I Schedule Chiange Request The format for a schedule change request is installation dependent.
Most likely it will be a memo explaining the change requested along
with a rationale.

R 12 Suspend Project This is a crisis r-sponse and will most likely be delivered in person in
a very unpleasant meeting. The form of the notice will be very
dependent on the specific manager and the situation.

Page 6.4 The Cleanroom Engineering Software Development Process 2J28/9191

- SET-1R70

Section 7
Managing A Cleanroom Project

In this section the Cleanroom Project Cycle is examined from the vantage point of the engineering
manager. In the Cleanroom environment the engineering manager has a-well defined mission which can be
stated as follows:

Given the responsibility to specify, design and certify software which is to fulfill a given mission the
engineering manager must organize, plan, direct, measure and control the activities of the three
Cleanroom engineering teams so these teams develop high quality software (i.e., the software
exhibits few, if any, failures in use) with high productivity.

The primary purpose of this section is to develop a list of the issues that a manager needs to consider

relative to organizing, planning, directing, measuring and controlling a Cleanroom project.

The following points will be discussed in greater detail in the following sections:

7.1 Productivity

7.2 Process Models and Productivity

7.3 Process Models and Management

7.4 Process Improvement

7.1 Productivity

A software manager must define and produce software that fulfills its assigned mission with the
greatest possible efficiency. Producing software that does its assigned job should be regarded as a constraint.
The manager who can perform the job more efficiently is the better manager. Since designing and producing
software is a people-intensive process, the main efficiency driver is productivity.

As software managers perform software projects, they need to be concerned with three sources of
low productivity: effort, realization and accuracy.

Effort productivity is involved with the type of things many of us consider when we think of
productivity. That is how hard people work. Effort productivity is often associated with imagining
managers using threats and worse to establish a high degree of effort productivity. Since software
development engineers are professionals, managers do not need to do much to establish effort
productivity. The main thing managers can do to establish effort productivity is to provide good
communications combined with a fair reward system.

Management involves human interaction. It is necessary that both the manager and each engineer
understand each other. It is also vital that engineers be able to communicate with each other. More
problems are caused by a lack of common understanding of what is being said. This is especially true
when both parties to the communication do not have a common understanding of what should be

2/28/91 The Cleanroom Engineering Software Development Process Page 7.1

SET-IR70 Section 7: Managing a Cleanroom Project

going on. The best way to solve communication problems is to establish a common basis for
communication and understanding. Activities that have a well understood process model have many
less communication problems than organizations that try to operate without a well understood
process model. Therefore, one important role of a process model is to provide a common basis for
communications.

A prerequisite to having a good reward system is to give people the ability to perform what they are
being asked to do. For example, software engineers are being asked to produce reliable software
without being provided with the tools to perform. This gap makes it nearly impossible to put in place
a fair reward system that works. Cleanroom directly attacks this problem.

Realization productivity is associated with having all the tools and other things required to perform
the task at hand. Each time someone must wait for something, is working with the wrong thing, is
working from a guess, does not have the right tool, etc., productivity is suffering. In a professional
organization effort, productivity is the responsibility of the individual professional and realization
productivity is the responsibility of the manager. In software development individual engineers
typically exhibit a high degree of effort productivity while managers typically are not providing an
environment that permits engineers to achieve a high degree of realization productivity. The reason
for this is that trial-and-error software development does not lend itself to organizing to minimize
realization loss since the process is out of intellectual control. Cleanroom directly attacks this
problem.

Accuracy productivity is associated with getting it right the first time. Whenever original work
must be reworked, productivity suffers. In environments where there is a high degree of rework,
productivity is low. In software development there is typically a high degree of rework. First,
engineers attempt to verify code by testing which leads to rework. In software development
attempting to test in quality is the norm and this leads to extensive rework. In software development
lack of accuracy is the major cause of low productivity. Cleanroom directly attacks this caus, of
productivity shortfalls by providing individual engineers with mental processes that permit then1 to
perform their work with a high degree probability of getting the work right so rework is avoided.

The Cleanroom process model as developed in the previous sections permits managers to increase
productivity in all three areas. Effort productivity increases due to the team style of working. Realization
productivity increases for two reasons. First, because Cleanroom enables organizations to replace heuristic,
undefined, individualistic practices by rigorous, team-oriented, mathematically derived practices that give
engineers complete guidance of how to go about their inventive process. Second, it gives managers guidance
on how to organize and to plan and control projects so the engineers can maintain a high degree of realization
productivity. And the Cleanroom practices provide engineers with guidance on how todevelop software that
requires an extraordinary low rate of rework based on current standards.

7.2 Process Models and Productivity

Process models are a prerequisite to establishing an environment in which engineers and managers
can communicate and achieve any reasonable level of productivity. A prerequisite to establishing a process
model is that the methods of converting inputs to outputs for the process must be well understood. All major
engineering disciplines except software have well established and widely understood process models.

Page 7-2 The Cleanroom Engineering Software Development Process 2/28/91 9

Section 7: Managing a Cleanroom Project SET-IR70

Software development managers have had a great deal of difficulty developing a useful process model for
software development because the methods of converting inputs to outputs are not well understood.
Cleanroom practices establish well defined methods for converting inputs to outputs when developing
software. Therefore, it is possible to establish a useful process model for software development when
Cleanroom practices are being used. The reasons it is possible for organizations and managers to clearly
organize for software development when using Cleanroom and not when they are using heuristic, trial and
errors practices can be summarized as follows:

Cleanroom clearly defines what has to be done, both on a general level (processes and control flow

among the processes) and on a detailed level (actual engineering tasks).

Cleanroom clearly defines how to accurately measure the design process.

Cleanroom emphasizes a team-oriented approach.

Cleanroom establishes a separation of responsibilities and concerns, and clearly describes the
activities done by each team.

Cleanroom dictates that an incremental development and certification approach be followed,
allowing developers and certifiers to maintain intellectual control over the system they are
developing.

7.3 Process Models And Management

A manager of a software development organization uses the software development process model
to guide each of the five major management activities. The following sections discuss each of these aspects
for the simpler half of the software development cycle. That is going from specifications to certified software
ready for deployment. The process of going from specifications to certified software is the easier of the two
software development problems. The more difficult problem, converting dream or concept into specifications
is not addressed in the sections below. These five activities are not sequential as there is overlap and they
are performed in a repetitive loop for the entire course of the project.

7.3.1 Organizing In A Cleanroom Environment

The goal of a manager, while organizing for a project, is to prepare a situation, which will lead to the
highest probability that the project will succeed where success is measured in terms of customer satisfaction
and minimum cost. Minimum cost is achieved by organizing to achieve high productivity, and customer
satisfaction is obtained by defining a product that fulfills the assigned mission with high reliability (i.e., no
(few) failures). Ideally, the engineering team manager wants to consider and if possible, solve, all
foreseeable issues. Before any software project begins, a number of issues related to the project must be
organized. These include at least the following: process manual, process management system, engineering
handbooks, computer hardware, software tools, state data storage, training, team formation, office facilities
and communications. Each of these issues are addressed below:

A clear process manual is critical for a successful project. The process manual justifies the process
to be used, and describes it. It presents a process user's guide for project managers and clearly

2/28/91 The Cleanroom Engineerirng Software Development Process Page 7.3

SET-IR70 Section 7: Managing a Cleanroom Project

describes what the rest of the engineering staff is to do. Clearly defined processes, tasks and
completion criteria must be defined to allow the project manager to direct, measure and control the
project. The processes, engineering tasks and completion criteria need to be made publicly available
to the rest of the engineering team to provide for a clear basis of communications. The Cleanroom
process model as developed in this document is intended to serve as a basis for specialization for
software development projects. It can then be refined based on actual use on software development
projects, thereby facilitating process improvement.

A Process Management System is very helpful to a manager in implementing, communicating and
managing the selected process for the project. Researchers are just beginning to develop Process
Management Systems dedicated toward software development. For example, the STARS
Breakthrough initiative (IR23) is supporting a prototyping effort to develop a process management
system.

Engineering Handbooks are extremely important for those participating in a project. The process
manual is a process user's guide for project managers and engineers. Engineering handbooks
describe, in detail, how a specific task or set of tasks are to be completed in a form that makes it easy
for a practicing engineer to recall specific facts when required. This is as opposed to text books which
are designed to teach the facts and methods in the first place. The task descriptions in an Engineering
Handbook present step-by-step processes which, when followed, lead to the completion of a task.
Conditions for the completion of each task are also given. With the combination of process manuals
and handbooks, all members of the engineering team for a software project have detailed descriptions
of the processes they must complete. Engineering handbooks are not yet available for software
engineering since trial-and-error development is not conducive to the rigor required of an engineering
handbook. It is now possible to develop engineering handbooks for Cleanroom Engineering. Until
the handbooks are complete, engineers practicing Cleanroom must use textbooks, papers from
professional journals or lecture notes from Cleanroom Engineering courses.

The engineering team requires computer hardware to perform work. All Cleanroom Engineers
require a personal computer or low-end workstation. These can be PC's (hopefully with Windows),
Macintoshes, or low-end UNIX workstations. It is desirable that the PC's and/or workstations be
linked with communications - a LAN for people working in the same location and a wide area
network for people working over a wide network. The Certification team needs access to the target
machine in order to test the software. It has been found that Cleanroom Engineers do not need
powerful workstations with sophisticated software to perform efficiently. This feature alone
provides organizations the potential for great savings. Consider that today most software developers
require a large engineering workstation to support the compiler. Compilers like Ada require a lot of
computing power and are expensive. When using Ada it is common for organizations to pay as much
as $15,000 for an engineering workstation with Ada and other software. If this is a large DoD project,
a hundred engineers may be involved. The total investment would then be $1,500,000. With
Cleanroom, there would be a savings because the same work could be done in less time with fewer
people; but to make the point about hardware, assume the same hundred people are required.
Workstations with software in the Cleanroom environment could be acquired for less than $3,500.
The Certification team may need two engineering workstations so the total cost may be $380,000.
A significant savings for a better, more productive environment.

Page 7-4 The Cleanroom Engineering Software Development Process 2/28/9191

- Section 7: Managing a Cleanroom Project SET-IR7O

In addition to the hardware, the computer software required must be selected and acquired. Today,
Cleanroom Engineers use word processing software. This is sufficient for design and coding, as well
as for specification and other writing requirements. Certification team members need access to a
compiler and configuration management software. In the future specific software to automate some
labor intensive portions of Cleanroom will become available. Cleanroom tools are not yet available
because until now effort has been concentrated on developing and refining the theory and
engineering practices. Now that the theory is essentially complete, it is time to start developing
Cleanroom productivity aids.

A means for storing state data must also be put in place. The key issues in selecting the means of
storage for the state data are: 1) to ensure that the information is praperly preserved, and 2) to allow
state data to be easily accessed and used by those who need it. A corollary of the second point is that
the information should not be readily available to those who do not have need for that part of the state
data. The state data can, and often will, exist in a variety of forms. Some may appear in notebooks
or be stored in file cabinets, while other information may be stored electronically. As long as the
means of storage preserves the information safely and accurately, and is easy and efficient to find and
use, that means is acceptable. It is critical to note that the means of storage will differ according to
the hardware and software resources available, but that does not change the organization of the state
data. For example, state data stored on paper and on floppy disks (in a PC based system) is organized
in the same way as the same state data appearing strictly on-line (in a server-based system).
Accessing the state data may be more or less convenient, but the considerations as to how material
is modified or how it is kept together are the same, whatever the means of storage. The following
questions can help define the best arrangement of state data storage for each project:

a) How will access to state data be controlled?
b) How will additions of state data be controlled?
c) How will deletions of state data be controlled?
d) How will modifications to state data be controlled?
e) How will state data be stored in a convenient format given the size and dispersion of the

project? For example, it may be more convenint that each category of each state data file
be kept in separate files (physical or electronic).

f) How will the integrity of the state data be checked?
g) What are the means of ensuring

- that the people who should know about new or updated state data know about it, and
- that the people who need to know have actually looked at the necessary state data.

The solution to these state data considerations will depend on the size and geographical dispersion
of the teams. In smaller projects the best arrangement may be manual files backed up by disk files.
In larger projects more elaborate online files are normally necessary.

Engineering team members need to be trained. Although the Cleanroom technologies exhibit only
evolutionary technological differences, these technologies must be well understood before the
Cleanroom project commences. Training, for those who will be on the Development team, in
designing systems using Box Structures and implementing systems using stepwise refinement and
functional verification is necessary. Those who will be a part of the Certification team must know
how to engineer software under statistical quality control. The training must include lectures and
workshops, in order to help the engineering team staff develop the necessary skills.

2/28/91 The Cleanroom Engineering Software Development Process Page 7-5

SET-IR70 Section 7: Managing a Cleanroom Project

Team formation. The engineering team manager must form the Specification, Development and
Certification teams. If the project is large, there may be more than one of each team. If the project
is small, an individual may be a part of more than one team. Each member of a specific team should
have the necessary training and skills for that team. The ratios of staff members between teams must
be determined inside an organization. Typically, there will be more developers than certifiers or
specifiers. Whether there are twice as many or just one more developer than certifier must be
determined in the environment, based on the staff and the problem at hand. In terms of a general trait,
a manager for a Cleanroom team wants the staff to be people who work well with others, as
Cleanroom emphasizes a team approach to development. Generally, there will be three or four
members per Development team, and one or two per Certification team. These team sizes permit at
least four increments to be completed and certified by a single team in a year except in the most
unusual circumstances.

The office and conference facilities must be organized. Individuals must have sufficient working
space. They also need easy access to the computers and state data that they need. Meeting rooms
are also necessary for team reviews, meetings, etc. These rooms only need to be large enough to
comfortably hold a Development, Specification or Certification team.' White boards are a useful
feature in the meeting rooms since they are a useful medium for the explanation of concepts during
proof reviews. There is a need for access to a large room for project reviews.

Finally, communication protocols must be specified while organizing for the project. This includes
communication between the Specification, Development and Certification team and communication
between one or all of the teams and outside organizations, such as the customer. Intra-team
communications should be oral and written, especially when decisions are made. In general, the
engineering team manager should be informed of or should conduct all external communications.
External communications should appear in a written form as much as possible. All communications
(external or internal) that affect more than one person should be written down and distributed (maybe
with a distribution list), in order to ensure that everyone who needs to learn about something will have
the opportunity.

In addressing these ten issues, the engineering team manager will have made significant progress in
organizing the process for success. It is a good practice to prepare a formal project organization document
that addresses these ten points and defines what is to be done in each case. There may be unforeseen issues,
before or during the project, that may lead to the need for a re-organization. If that occurs, the original
resolutions of the ten issues may need to be modified to address the new situation. Real time organizing is
more difficult but will address the same issues that the original organizing session addressed.

Organizing for a project may be the most important task a manager can perform. If the manager does
a good job of organizing, the project is likely to go smoothly even if the manager falls down on the other
aspects of management. On the other hand, if a manager does a poor job of organizing, no matter how well
all the aspects of management are performed, the project is likely to be a disaster.

7.3.2 Planning In A Cleanroom Environment

The goal of the planning phase is to develop a realization of a process for a specific project. This
entails significant effort in understanding and analyzing the process and the project, and the packaging of

Page 7-6 The Cleanroom Engineering Software Development Process 2/28/91

- Section 7: Managing a Cleanroom Project SET-.R70

that understanding and analysis as the project plan. Specifically, the engineering team manager must assess
the project parameters and the Cleanroom parameters, thus understanding the project and process. This
information can then be synthesized into a Cleanroom project plan. Finally, the plan must be documented
in order to facilitate communications.

In order to understand the project, two important parameters must be addressed. First, the
incremental approach to development and certification must be clarified. Although this issue is process
dependent, it primarily focuses on the project. The number of increments, their sizes and their relative
complexity must be understood. Additionally, the number of reviews and test scenarios (which are a function
of the desired reliability) must be estimated. The organization of the increments is also dependent on the
number and size of the Development and Certification teams. Also, the amount of remaining bottom-up
exploration must be estimated. This is the amount of time spent understanding the problem and solution
domain before the actual process of forming a solution begins.

Second, the resource estimation for the project must be done. The manager must determine the staff
and computer resources required for each subsystem or increment. This analysis leads to the bes: possible
delegation of resources to the project.

To estimate resource requirements the production factors for the project must be determined. A
typical production factor is an estimate of how much code and other items can be created or completed per
unit time, using the Cleanroom process. Production factors are somewhat project dependent, but primarily
concentrate on the process being used. Specifically, development and certification productivity must be
understood. The staff productivity of both teams are dependent on a number of common issues. In terms
of staffing, size and available hours, as well as the extent of training, must be understood. Both of these
factors are specified during the organizing activity and lead to a staff productivity estimate. In addition, the
experience that the staff has, both in the project domain and with the process, must be determined.
Productivity is also dependent on the resources available for the project, both hardware and software (such
as tools, etc.). These factors were determined during the organizing activity. All of these factors yield a
realization productivity estimate. Finally, the project manager must estimate how much of the project may
need to be redone. This includes changes to requirements, as well as the probability that one of the teams
will make a mistake, such as leaving too many errors in the code. For this, an accuracy productivity estimate
must also be made. Once the information listed above is available, the project manager can estimate
developer and certifier productivity, based on the effort, realization and accuracy productivity factors. The
developer productivity is a rate at which code or other development items can be produced during the project.
The certification productivity is the rate at which test scenarios can be created or executed during the project.

Another very important factor that influences planned productivity is the amount of software that is
planned to be reused. Software that is planned for reuse may have to be certified to insure it provides the
required reliability. This can be done by developing a usage profile and constructing usage tests. The reuse
plan will affect the order of construction. Planning for reuse in the Cleanroom environment was one subject
of the IR 70 Phase I report.

Finally, the Cleanroorn model must be understood. The model can be combined with project-specific
knowledge to permit the engineering team manager to tailor the Cleanroom process model in order to best
complete the project.

2/28/91 The Cleanroom Engineering Software Development Process Page 7-7

SET-IR70 Section 7: Managing a Cleanroom Project

This process model is meant to be a description of the Cleanroom process, not necessarily a
prescription of how to complete the Cleanroom process in all situations. The process model is not used
directly to allocate effort to and then control the performance of a project. The process of using the model
to plan for, to schedule and then control a project requires three steps as follows:

1. The process model is used to define a list of all the processes required for the project of interest
(the project processes). To prepare the list requires knowledge of the specific project. For
example, number of increments, the number of reviews and when they are to occur, etc.

2. The process model is used to determine the precedence relationships between the project
processes. The result is a precedence diagram, commonly called a PERT chart. Given project
knowledge it is possible to assign the effort required to perform each of the project processes.
Therefore, it is possible to determine the critical path through the precedence diagram. The result
is the minimum project duration.

3. Then, given resources to perform the project, it is possible to allocate the project processes to
resources and develop a schedule. There are many possible schedules that can be used to perform
the project. Project managers, of course, try to find the best schedule. Best is defined according
to many factors, including risk minimization.

Tailoring is not easy and will often continue past the planning stage and into the project.

Upon the understanding of the project and process parameters, the engineering team manager records
the project plan. In addition to creating the plan, the justifications for the plan must be documented. This
documentation will be used to communicate to and persuade upper management that the plan is the right one.
The plan should be complete and consistent in defining the goal, process and strategy, in order to minimize
ambiguities and to maximize precision. That will make the plan easier to implement.

The need may arise to replan the project after it has commenced. Unfortunately, this often occurs
due to situations outside of the engineering team manager's control. If this situation occurs, the project and
process must be re-assessed in light of the new situation, and the new plan must be redone accordingly. The
justifications for the original plan will be useful again at this stage, not only for its original purpose of
presentation to upper management, but also to minimize rework by outlining the strategy that led to the
original plan. That strategy may still be correct, or may leave the staff at a more advanced point, requiring
less rework than starting at the beginning of the planning process. Ideally, the need for replanning will not
occur, or will only be minor. Unfortunately, that is not always the case; and it behooves the manager to leave
as detailed a plan creation trail as possible.

7.3.3 Directing In A Cleanroom Environment

Once the project has commenced, the process of directing (that is, %nsuring that the plan is followed)
is critical to the success of the project. The plan is issued at the commencement of the project, Project
Invocation (E0), and the activities of the engineering team commence, based on the plan. The plan is a
detailed and tailored version of the Cleanroom process described in Sections 4 and 5 and will clearly define
the processes that the Specification, Development and Certification teams will follow. Additionally, the
flow of control between processes is well defined, in other words, the temporal relationships between all of

Page 7-8 The Cleanroom Engineenag Software Development Process 1128/91

"- Section 7.: Managing a Clearoom Project SETUR170

the processes are well defined. The manner by which a manager can ensure that the process is being correctly
followed is by checking the completion conditions at the end of each process. The completion conditions
are known to all of the engineering staff in the Cleanroom process, since they are a part of the plan. These
conditions are checked by members of the Specification, Development or Certification teams when they
believe that the specific process is completed, and also validated by the manager to confirm that the process
is completed. It is a good idea to prepare check lists of completion criteria for each process in the project
process hierarchy. These check lists should be distributed to the teams with their assignments. The team
can then sign off that all completion conditions have been satisfied when they are complete. In this way
everyone knows what is expected and what has been accomplished. Managers should validate that the
defined Cleanroom practices are being followed by sampling the performance of teams on a random basis.
This insures maximum conformance with minimum expenditure of effort. Cleanroom completion
conditions checklists are included in Appendix A.

In addition, the description of the process (the manner in which the process is followed) also
facilitates how it is directed. The team-oriented, public engineering process obligates engineering team
members to audit each other's work, minimizing the potential of major mistakes. Developers and certifiers
each use a common language (developers use BDL and PDL, while certifiers have clearly defined usage
profiles and mathematical processes). The use of a common language helps minimize assumptions and
ambiguities, and enhances the chances for completeness and correctness. As developers must depend on
each other, not on compilers or their own test drivers, they tend to be more careful, leading to better results.

The public nature of the state data, another by-product of the process also eases the task of directing
the process. Checking the preserved documentation periodically will give the project manager a clear
understanding of how well the process is being followed and where additional direction is needed.

The engineering team must also be given the proper incentives and disincentives to follow the plan
correctly. The set of incentives and disincentives for a Cleanroom project will differ from those for a typical
project. For example, rewarding the developers by the amount of code they write is not a proper incentive
while rewarding the lack of failures in code is a good incentive. Typically, developers are incentivized to
spend a significant amount of time doing structural testing. This activity should be strongly disincentivized
with Cleanroom. With typical processes, the need to keep the completeness and consistency of all design
materials is not incentivized, since it does cost money. With Cleanroom, this activity should be strongly
incentivized as it saves money. A proper set of incentives and disincentives will make the engineering team
more motivated to follow the plan, making the project easier to direct.

During the course of the project, the project manager will make real time observations and, as a result,
modify the schedule to account for difficulties or to take advantage of opportunities. Examples include:

A process is scheduled to begin and, for any number of reasons, it is determined the process should
not start as scheduled. As a result the project manager does not issue the instructions to invoke the
process.

A process is in progress and, either because of events observed in the performance of that process
or in some other process, the manger decides to interrupt performing on that task.

2/2"/91 The Cleanroom Engineering Software Development Process Page 7.9

SET-fR70 Section 7: Managing a Cleanroom Project

7.3.4 Measuring In A Cleanroom Environment

Measuring, in a management sense, are the activities involved in understanding the actual state of
the project, in order to make decisions on how the process needs to be modified. Measuring, in this sense,
can be both quantitative and qualitative. It is the sum of all observations and other stimuli that the engineering
team manager receives during a project. The ability to measure, and to acquire useful measurements, comes
as a result of the Cleanroom process. The ways in which a manager can measure a project can be put under
three broad categories: reviews, metrics and personal interaction.

In the Cleanroom process, there are two levels of reviews, project reviews and team reviews. The
project reviews are detailed in Section 4.8, in process ES, which is called "Prepare For and Conduct Project
Review." During the review, the project manager has the opportunity to hear opinions on the status of the
project from a variety of different perspectives. These perspectives not only include the Specification,
Development and Certification teams, but also the client and other outside organizations. Each of these
perspectives will give the project manager some insight as to the state of the project at present.

The team reviews also give the project manager an understanding of the state of the project, although
at a more detailed level. The Specification team reviews the specifications and changes that may need to be
made to them. This is done in the Write Specification process (E14) and the Update Specification process
(E20). The Development team reviews the proof conversations, at both the design and code level. These
reviews are primarily done in the Develop Increment i process (E 18), and also done some in the Correct Code
Increment L..j (E24). Finally, the Certification team looks at the various testing artifacts in their reviews,
ensuring that their certification approach will follow the usage profile of the target software. The reviews
are fairly limited to the Develop Certification Tests for Increments 1..i process (E19). A manager who
participates in review, or more often receives the results of the reviews, has a relatively accurate assessment
of the state of that part of the project. The manager knows that the reviews are a result of the effort of the
entire team, with a limited set of concerns. For example, a certain Development team is only concerned with
the design and coding of one relatively small increment during a certain period of time. The results should
be quite dependable. These review points are a natural and required part of the Cleanroom process, they are
not viewed as management assessment points.

Measuring is also done by gathering quantitative metrics from the Cleanroom process. These metrics
are generally a natural by-product of hie Cleanroom process, making them easy to gather. These metrics are
described, in detail, in Section 4.9, in the Prepare and Submit Project Status Reports process (E9). The
System Reliability measurement, for example, gives a clear and accurate assessment of how the product will
work in the field. They, along with other measures, will point towards any necessary changes that may need
to be made to the process. The metrics are gathered during all 25 processes to directly reflect all aspects of
the Cleanroom model.

During a project, the manager will interact with members of the engineering team staff. These
interactions may occur as meetings or in one-on-one situations. Knowledge gained from these types of
activities will also assist the manager in understanding the present state of the project. Additionally, the
manager is continually assessing the status of the project by determining which completion conditions for
processes have been met. At the end of each process, the manager will determine whether a process is
finished by checking that the completion conditions are fulfilled. These conditions are identical to those
generated by the engineering team for each process, so there should be no surprises to the manager or the

Page 7-10 The Cleanroom Engineering Software Development Process 2/28/91

- Section 7: Managing a Cleanroom Project SET.-R7O

engineering team since both had to look at the same checklist. The checklists for the 25 processes in
Cleanroom appear in Appendix A. For each of these checklists, a completion condition is dated when the
manager determines that it has been fulfilled. Engineering team members do the same, and everyone signs
the form. In that way, accountability for decisions is clearly established by having a person available to
clarify the resolution of any completion condition. The checklists can clearly describe the state of the
processes in a project.

The measures that the manager receives during the process (as a result of the reviews, the quantitative
metrics) and management interaction lead to an accurate portrayal of the current state of the project. This
understanding of the actual state of the project gives the project manager more complete information for the
decisions that may need to be made to improve the process.

7.3.5 Controlling In A Cleanroom Environment

The controlling activity includes the comparison of the actual project to the plan, and the actions that
are a result of the comparison. The comparison itself is done by looking at the results of the measuring
process and at the plan, and noting any differences. The differences may be major or minor, as well as many
or few.

For the differences found, the project manager must decide what actions to take. Of course, a
reasonable and very realistic action is the decision not to take any action. In this situation, the project
continues exactly as planned, with no modifications whatsoever. If an action is to be taken, the manager has
a number of options. The manager may decide that sufficient information is unavailable for an action to be
taken. In that case, the measuring activity will be modified to allow for more complete information to be
found. In another case, the manager may determine that the plan is correct and that one or all of the teams
have not been following it. In that case, the manager will redirect the engineering team by clarifying the plan,
or by issuing new incentives or disincentives. If the manager decides that the plan needs to be change, a
replanning activity may be required. The replan will result in a new Cleanroom project plan. It will appear
after a thorough analysis of the project and the Cleanroom parameteirs. Finally, in the worst case, the manager
may decide to reorganize the project. When this occurs, the process manuals, handbooks, hardware,
software, state data storage, training teams, facilities and/or communications may need to be changed. This
level of action will probably result in a new project and should be viewed as a last resort.

Each possible level of action will return the project manager to one of the previous stages of the
management process. The actions also may also affect the engineering team and the Cleanroom processes
they are completing. The actions may change a part of a process, an entire process, or the entire set of
processes (i.e., the project). The iterative process that the project manager follows will eventually
(hopefully) end with the manager determining that the project is completed, all obligations are fulfilled, and
the action is to start the next project.

7.4 Process Improvement

The preceding discussion has concentrated on managing a single project or managing in the small.
Managers also need to manage in the large by constantly improving the means by which they conduct
projects. A major component of managing in the large is process improvement. The major thrust of process
improvement is to observe what occurred on a project and learn what worked well and what did not work

2/28/91 The Cleanroom Engineering Software Development Process Page 7-11

SET-IR70 Section 7: Managing a Cleanroom Project

well. These observations are used to implement activities directed at improving some aspect of the process
or other resources used to support software development projects. All managers use a Process Improvement
Paradigm to improve how they are organized to perform projects. More successful managers perform
process improvement better than less successful managers.

The way process improvement works is that data (metrics) are collected about how well the processes
and other resources worked on the current project. These observations are analyzed and correlated with
measurements on other projects to develop lessons learned which are then used to implement a better set of
resources for the next project. The results may be better or worse. The result of this process is a whole series
of results from natural experiments which the manager analyzes and uses to constantly improve the resources
assigned to software development. This process improvement paradigm is not unique to software. In fact,
the process improvement paradigm is much more mature in most (maybe all) other engineering fields.

Page 7-12 The Cleanroom Engineering Software Development Process 2/2W/91

"SET.1RT0

Section 8
Cleanroom Specification Team Practices

In this section the Cleanroom Project cycle is examined from the vantage point of the Specification
team. In the Cleanroom environment, the Specification team has a well-defined mission which is stated as
follows:

Given a general set of requirements for a software system, define a specific function to meet those
requirements, which maps any possible sequence of user stimuli to the next correct response and a
real time requirement for returning that correct response; further decompose this function into a
nested set of increments that accumulate into the total function; further define the statistical usage
of the software by mapping every possible sequence of stimuli to a probability distribution for the
next stimulus.

In this short statement, the term "function" may be generalized to the term "relation" to admit more than one
possible correct response for a given sequence of stimuli. Note that the specification is a Black Box that
makes no reference to stored data, only to sequences of stimuli from which data can be captured and stored
in a specific system solution.

In performing this mission the Specification team is performing the engineering tasks defined in E4:
Software Solution Specification, which is made up of

E12: Understand Problem Domain
E 13: Understand Solution Domain
E14: Write Specifications
E15: Write Construction Plan,

in Section 4, E20: Update Specifications and E2 1: Increase Understanding of Problem and Solution Domains
as Required.

The Specification team also contributes to performing the work defined in E2: Program Management,
E3: Project Information Management, and E6: Prepare Final Project Releases.

The following points will be discussed in greater detail in the following sections:

1. Specifications and Construction Planning
2. The Specification Documcnts
3. Recording The Specification
4. Developing The Expected Usage Profile

8.1 Specifications and Construction Planning

Precision in specifications requires formal languages, just as programming does. A formal
specification defines not only legal system stimuli, but legal stimuli sequences; and for each legal stimuli
sequence, a set of one or more legal responses. Any such formal specification, in any language, is a
mathematical relation - a set of ordered pairs whose first members are stimuli sequences and second members

2/28/91 The Cleanroom Engineering Software Development Process Page 8-1

dependent on the specific manager and the situation.

Page 6-4 The Cleanroom Engineering Software Development Process 2/28/91

SET-IR70 Section 8: Cleanroom Specification Team Practices

are responses. Then, there is a very direct and simple mathematical definition for a program meeting a
specification. It is that the program determines a correct response for every stimuli sequence in the domain
of the specification.

In Cleanroom Engineering, specifications are extended in two separate ways to create a structured
software development. First, the formal specifications are structured into a set of nested sub-specifications,
each a strict subset of the preceding sut -specification. Then, beginning with the smallest sub-specification,
a pipeline of software increments is defined with each step going to the next larger sub-specification. Second,
the usage of the specified system is defined as a statistical distribution over all possible stimuli sequences.
The structured Cleanroom process makes statistical quality control possible in subsequent incremental
software development to the specifications. The usage statistics provides a statistical basis for testing and
certification of the reliability of the software in meeting its specifications.

A structured software development defines not only what a software system is to be when finished,
but also a construction plan to design and test the software in a pipeline of subsystems, step by step. The
pipeline must define step sizes that the development team can complete without debugging prior to delivery
to the Certification team. Well educated and disciplined Development teams may handle step sizes up to
ten thousand lines of high-level code or more. But the structured design must also determine a satisfactory
set of user executable increments for the pipeline of overlapping development and test operations. The
pipeline must also define the statistical usage of each partial subsystem for the testing and certification
process.

The first task of a Specification team is prepare and publish a specification for the software. As noted
above, the specification should be in six parts

Mission Volume
User's Reference Manual Volume
Functional (Black Box) Specification Volume
Functional Specification Verification Volume
Expected User Profile Volume
Construction Plan Volume

The Mission Volume defines the mission the software is to perform in terms of function and
performance at an executive level. The User's Reference Manual Volume defines the precise stimuli users
can enter and the precise responses users can observe, organized in aform to permit effective userreferencing
during operations. The Function (Black Box) Specification Volume provides the Black Box response to
every stimulus based on the preceding stimuli sequence and the real time performance required for each
stimulus. The Functional Specification Verification Volume presents the justification that the Function
(Black Box) Specification is correct as written. The Expected Usage Profile Volume defines the statistical
usage profile for each stimulus following every sequence of preceding stimuli. The Construction Plan
Volume defines the sequence of increments in wnich the software is to be developed and certified.

8.2 The Specification Documents

There are two aspects to creating a specification.

Page 8-2 The Cleanroom Engineering Software Development Process 2/28/91

Section 8: Cleanroom Specification Team Practices SET-MR70

The first is deciding what should be done and how to do it from the user's perspective. This is a hard
problem. This is an inventive step. This where the look and feel of the product is determined. What functions
will be offered. How the user will initiate each function. The list of inventions/decisions is enormous. In
order to determine what should be done, there is the need to investigate the problem domain and the solution
domain. Typically, these investigations require considerable time as alternatives are developed, evaluated,
discarded and adapted until the final approach is selected. It is not possible to develop a prescriptive recipe
to perform this inventive process. Typically, this difficult process is made even more difficult due to the fact
that while all this exploration is proceeding, the project sponsors are modifying their view partially in
response to the findings of the investigations and partially in response to other things and experiences they
are having in the normal course of performing their jobs.

The second aspect of specifications is recording the results of all these inventions and decisions.
These are recorded in the specification document. It is possible to be quite prezise how the specification
documents should be written. First the specifications should be formal, even if they are preliminary. Second,
given document outlines to serve as an objective for recording the decisions/inventions made, it is quite easy
to develop the specification documents.

Typical outlines for the six volumes are provided in Figure 8.2.1 (Figure 8.2.1 is 7+ pages in length).
Each of the six documents has specific purposes, which define the content and format of the volume.

The purposes of the Mission Volume are (1) to define the mission that the software is to fulfill, (2)
to define the context in which the software will be operating, and (3) to record the argument that says if the
software satisfies the defined mission, it will accomplish its share of the goals assigned to the automation.

The purpose of the Functional (Black Box) Specification Volume is to define an implementation-free
view of the internal structure of the software being designed. This implementation-free view is obtained by
specifying functions which define the conditions in terms of stimuli histories that cause the presentation of
each possible response that can be produced by the software.

The Functional Specification Verification Volume presents an argument which justifies the correctness
of the Functional (Black Box) Specification Volume. This argument is not easy to make, but serves as the
basis for accepting or rejecting the specifications.

This User's Reference Manual volume contains a precise definition of all the inventions made by the
software designers in terms of the stimuli and responses invented for the software to interface with the
environment in which it will be operating. A user with sufficient subject matter expertise should be able
to use the software by using this volume.

The Expected Usage Profile volume contains the definition of how it is anticipated the software will
be used by each class of user. This definition is required to develop test scenarios in accordance with usage
specifications so it is possible to make measurements for how reliable the software will be when it is put into
service in the environment where it is expected to operate.

The purpose of the Construction Plan volume is to develop a plan for the Development and
Certification teams during actual product development. The plan contains the actual modules and functions
to be a part of each increment. The result is a list of modules that the Development team needs to produce
for each increment, and the functionality available for the Certification team to certify for each increment.

2/28/91 The Cleanroom Engineering Software Development Process Page 8-3

SET-IR70 Section 8: Cleaxroom SpecOf.ation Team Practices

Figure 8.2.1 Software Specifications: Typical Outlines

Software Specification For

[Software Project Name]

Volume I - The Mission

Section 1 The Mission Statement

A mission statement identifies the purpose of the service that the software is to provide to the
organization (product) using the software. The mission statement specifies what effects the software is
intended to have on each of the stakeholders in the service the software is providing. A mission statement
should rarely be more than one page. It should be a clear, concise statement of intent. A stakeholder is any
noncompetitive individual or organization directly affected by the software's behavior and performance; for
example, stockholders (it is a rare software system that does not affect the profit), customers, suppliers,
distributors, employees, government agencies, etc.

A typical profile for a mission statement is:
The mission of the _(name) . software system is to provide (the service) to .(the
users)_ in such a way as to satisfy:

1. the shareholders by -
2. the software users in department by
etc. for all stakeholder.

The above structure tells exactly what service the software is intended to provide to whom and defines the
direct and indirect benefits and costs to each individual and organization affected by the software. Such a
statement should be challenging and exciting to virtually all of an organization's stakeholders.

Section 2 The Detailed Mission

This section defines the requirements allocated to the software so the software is in a position to
satisfy the mission statement. This section should define each requirement for the software in a single
statement in the format:

The software shall . Each requirement should be followed by

1. a justification for how the subject requirement contributes to fulfilling the mission assigned
to the software,

2. a rationale for the choice of any quantitative limits containedI in the statement so it is clear why
that value has been selected rather than the quantitative target plus or minus a delta, and

3. a definition of how the accomplishment of the requirement can be observed in the service
provided by the software. Figure 8.2.1 Continued on Following Page

Page 8-4 The Cleanroom Engineering Software Development Process 2/28/91

Section 8: Cleanroom Specification Team Practices SET-IR70

Figure 82.1 Continued

Section 3 The System Context

This section defines the context or the environment in which the software will be operating. The
precise contents of this section will differ depending on the situation. The following is a list of topics which
typically may be included:

1. a description of the current system to be improved by the planned automation,
2. how the new system that includes the new automation components will be operating,
3. the expected benefits, and
4. a summary of the other components of the system so it is clear how the software will fit in

with other system components.

The exact contents will depend on what is required to insure that the contemplated role of the software in

the environment to be created is clear.

Section 4 The Mission Validation Argument

This section contains the arguments that say if the software is implemented and accomplishes the
defined mission, the software will accomplish its intended purpose in the environment where it will be
operating.

Software Specification For

[Software Project Name]

Volume I - User's Reference Manual

Section 1 The Environment

The software exists in a larger environment. This section defines the environment that the software
will operate in. This section typically includes subsections on:

- the computing hardware
- the peripherals
- the directly connected devices if any
- the local and remote communications network, if any
- the operating system environment
- related software
- related data bases
. the people using the software

Figure 82.1 Continued on Following Page

2/28/91 The Cleanroom Engineering Software Development Process Page 8-5

SET-IR70 Section 8.: Cleanroom Specification Team Practices

Figure 82.1 Continued

Section 2 The Stimuli

This section defines many important inventions that have been made to make the software useful to
fulfil its intended mission. The exact outline of this section depends on the organization that will best explain
the inputs to the software. But no matter what the organization is, this section must define the following for
each stimulus:

The precise syntax and format of each stimulus.

The method by which the stimulus is developed from the environment. For people-generated
stimuli, this transformation needs to deal with the anticipated working relationships of the people
generating the stimuli. This typically means defining or referencing the manual systems and
procedures to put the software stimuli into context. For analog stimuli, this means defining the
precise way the device communicates with the software including all issues of timing.

Key points and issues the user needs to understand when using that stimuli.

It is often very desirable to include examples that help the reader understand the use of the stimuli.
In addition to the above information which is normally best defined one stimuli at a time, a formal
definition of all the stimuli using formal grammars that integrates the relationships between the
stimuli must be included.

It is very important to organize this section for readability and understandability. Typically, it
is difficult to make clear the relationship between all the invented stimuli so the organization is
very important. To enhance readability it is often necessary to included references to other
sections which define other stimuli and responses.

All stimuli including those for initiating use of and terminating use of the software must be
defined. No stimuli should be left for latter invention. A common failing of many software
designers is to first specify and then implement the mainline stimuli/responses and then add the
special commands required to perform other activities. This policy leads to undesirable
consequences.

Section 3 The Responses

The exact outline of this section depends on the organization that will best explain the outputs from
the software. But no matter what the organization is this section must define the following for each response:

The precise syntax and format of each response. It is often very helpful to define reports, screens,
menus, etc. in terms of formal grammars.

Figure 8.2.1 Continued on Following Page

Page 84 The Cleanroom Engineering Software Development Process 2/28/91

Section 8: Cleanroom Specfication Team Practices SET-IR70

Figure 82.1 Continued

The method by which the response is used in the environment. For people consumed responses
this transformation needs to deal with the anticipated working relationships of the people using
the response. This typically means defining the manual systems and procedures to put the
software responses into context. For analog responses this means defining the precise way that
the software communicates with the devise including all issues of timing.

Key points and issues that the user needs to understand when using that response.

It is often very desirable to include examples that help the reader understand the use of the
response.

In addition to the above information which is normally best defined one response at a time a cross
reference that defines which responses can be caused by each stimuli. This information is defined precisely
by the Black Box function but this summary information is often very helpful in communicating
understanding as well as being helpful in validating the external design of the software.

It is important to organize this section for readability and understandability. Typically it is very hard
to make clear the relationship between all the invented stimuli so the organization is very important. To
enhance readability it is often necessary to included references to other sections which define other stimuli
and responses.

Section 4 System Performance

In many systems there are performance constraints associated with the transformation of stimuli into
responses. These requirements are typically related to speed of transformation of the accuracy or precision
of the transformation. All performance standards must be defined.

Section 5 Undesired Events

Software is designed to handle undesired events as well as the desired or planned events. In this
section all undesired events are enumerated and the response that will be taken to each undesired event is
defined along with the corrective actions the user may take in those cases where corrective actions are
required.

Section 6 Software Initiation

This section describes what to do when the software arrives from the developer. It describes how
the software is to be installed, configured or tailored, how files are to be initialized, and how the software
is invoked for the first time, what to do in case of a failure and the system must be re-initialized and all other
activities associated with making the software ready for use.

Figure 82.1 Continued on Following Page

2/28/91 The Cleanroom Engineering Software Development Process Page 8-7

SET-IR70 Section 8: Cleanroom Specfic'ation Team Practices

Figure 8.2.1 Continued

Section 7 Glossary

What is meant by

Section 8 Index

Where to find it

Software Specification For

[Software Project Name]

Volume Il - Functional (Black Box) Specification

Section 1 The Stimuli

This section lists all the stimuli and for each stimulus provides an exact name, a brief description, a
reference name or number used in the Black Box function for identification purposes, and reference
section(s) in Volume 1I of the specifications which define the stimuli in full detail.

Section 2 The Responses

This section lists all the responses and for each response provides an exact name, a brief description,
a reference name or number used in the Black Box function for identification purposes and reference
section(s) in Volume Im of the specifications which define the responses in full detail.

Section 3 The Black Box Function

This section contains a sub-section for each stimuli. Each sub-section defines the conditions in terms
of stimuli histories under which each possible response that can be triggered by the arrival of the stimulus
which is the subject of this sub-section. The Black Box sub-functions can be expressed in terms of pseudo-
code or program tables.

It is very important that these functions be defined very carefully and are well written so that everyone
who is interested in the software can read them with comprehension. It is very important that no state data
or other implementation-dependent inventions creep into the definition of the Black Box functions because
if they do, they are no longer Black Box functions. Once they become something besides Black Box
functions, they lose their independence and ease of comprehension.

Figure 82.1 Continued on Following Page

Page 84 The Cleanrooi Engineering Software Development Process 2/28/91

Sectioe 8: Cleaxroom Spec&cadon Team Practices SET-HOT

Figure 8.2.1 Continued

Software Specification For

[Software Project Name]

Volume IV - Functional Specification Verification

The Black Box Validation Argument

This document contains the argument that says if software is implemented so that it satisfies the
defined Black Box functions the software will fulfill its intended mission.

It is important that this argument be well presented since it is possible to verify the software as
developed to the Black Box function. To insure the software will satisfy its intended mission, it is necessary
to satisfy all interested parties that if software satisfies the given Black Box function, it will satisfy its
intended purpose.

Lower level design work should not progress until all interested parties are satisfied with the Black
Box function. That does not say that bottom-up exploration can not proceed. It is often necessary to conduct
extensive bottom-up exploration to develop the specification, but bottom-up exploration should not be
confused with top-down design.

Software Specification For

[Software Project Name]

Volume V - Expected Usage Profile

Section 1 Usage States

As the software operates, it moves from one program state to a next program state. For example, in
a simple situation the software is in the state of displaying screen 15 and as a result of some action moves
to another state by displaying screen 22. The first step in developing a usage profile is to specify all the
program states that the software can be in. This list of program states can be developed by an examination
of the Black Box Function and Users Reference Manual. Program states have nothing to do with actual
implementation. These are states defined by the understanding of the problem and solution domains of the
system to be implemented.

Figure 8.2.1 Continued on Following Page

2V28/91 The Cleanroom Engineering Software Development Process Page 8-9

SET-IR70 Section 8: Cleanroom Specification Team Practices

Figure 82.1 Continued

Section 2 Stimuli and Stimuli Distributions

In order to describe the transitions between the program states, it is necessary to understand the nature
of the stimuli to the system to be implemented. The potential stimuli and their distributions for each state
need to be listed. This needs to be preserved as it will be used in order to generate test scenarios.

Section 3 Usage Profile

The program execution paths can now be converted into the expected usage profile. The format of
a usage profile is a matrix of transition probabilities. The matrix is an n x n matrix (where n program states
have been identified) with each row and column representing a program state. The rows represent from
program states and the columns to program states. The cells of the matrix represent the transition
probabilities of software moving from program state i to program state j. The transition probabilities along
each row must sum to 1.0. Typically only a small percentage of the cells have non-zero transition
probabilities. Once this matrix is available, it is easy to generate test scenarios for the defined user class. If
there are multiple classes of users, one transition probability matrix can be obtained by determining what
proportion of the usage will come from each class of user.

Section 4 Transition Processes

For each possible transition, it is necessary to define the sequence of stimuli that cause the transition
to occur. This information is required to generate test cases.

Section 5 Assumptions

In developing the usage profile, certain assumptions will have been made. These assumptions are
recorded in this section.

Section 6 Increment Usage Profiles

The software will be constructed and certified in increments. Each increment is executable by user
commands. In order to measure the reliability of each increment, it is necessary to develop a usage profile
for each increment from the usage profile for the entire software system. The expected usage profiles for
each increment are recorded in this section.

Figure 8.2.1 Continued on Following Page

Page 8-10 The Cleanroom Engineering Software Development Process 2V28/91

"Secton 8: Clearoom Specfwcation Team Practices SET-.R70

Figure 82.1 Continued

Software Specification For

[Software Project Name]

Volume VI - Construction Plan

Increment 1:

1. Specifications references for increment 1

2. Increment Architecture

a) First level black boxes
b) Second level black boxes

3. Component 1

a) Black Box for Component 1
b) Additional material available on Component 1

4. Component 2

Increment 2:

End of Figure 82.1

V282191 The Cleanroom Engieering Software Developmeot Proceu: Page 8-11

SET-IR70 Section 8: Cleanroom Spec ifcation Team Practices

8.3 Recording The Specification

In this section no attempt is made to define how to go about recording the specification. It is a detailed
writing job. Section 9 gives guidance in developing a Black Box function which is the subject of volume
3. It typically require- i great deal of hard thinking to develop the Black Box function. Section 8.4 provides
guidance in developing a usage profile.

The verification volume may be a new idea to some software engineers. In many environments, the
software design is given to the users, problem sponsors and others; and they are expected to appraise the
design and determine if it will solve their problem. This mode of communication puts the responsibility for
proving the specifications are acceptable on the user. In this manual, it is suggested that it is better to put
the responsibility for arguing that the specifications define a product which solves the user's problem on the
designers. This seems to be the proper allocation of responsibility since it is the designers who made the
inventions that they believe will solve the specified problem.

It is important to note that the specification document must be done before the final design is started.
If it is not done, there is no way to verify the software; and even more important, the software designers do
not know in detail what they must do.

8.4 Developing the Expected Usage Profile

A Markov process is defined by an n by n matrix where the rows and columns represent the states
in which any system can be in. The cells of the matrix represent the probability of moving from state i to
state j. The probabilities on any one row must sum to 1.0, except for terminal states which are defined by
a row of zeros since there is no probability of moving from a terminal state to an active state. Repeated
multiplications of the matrix will finally result in a matrix with all non-zero elements on the diagonal. These
values represent the steady state probability of the system being in state i. For example, the following simple
model that appears in Figure 8.4.1, using a Markov process, might represent all possible realizations of a
glider flight.

Figure 8.4.1 Program States for a Glider

Flight Up Down Sideways Crash

Up .25 .50 .25 .00

Down .40 .25 .25 .10

Sideways .50 .50 .00 .00

Crash .00 .00 .00 .00

Page 8-12 The Cleanroom Engineering Software Development Process 2/28/91

Section 8: Cleanroom Spectricadon Team Practices SET-IR70

The Markov process is a powerful abstraction (model) for representing all the possible realizations
of a software system. Consider the following:

With a statistical usage specification, the probability of each stimulus in each state is known.

The functional specification defines what the state will become, as will the response to the user.

These two facts define a Markov process, given
the set of all states, and
probability of going from one state to the next.

The interaction of a user with a system defines a particular realization of the Markov process.

Each selection of a stimulus (command and/or data) defines a Markov transition.

The probability of the entire sequence will be the product of the probabilities of each transition.

Responses play no role in the Markov process except to provide information for the user selection
of the next sequence of stimuli.

Entire lifetime realizations of a software system will be a sequence of states defined by a Markov
transition.

The same software can be used to obtain many realizations, each a unique history of stimuli which
have created the states.

These realizations will be different and failure experiences, if any, will be different as well.

From the reasoning above, it is clear that a Markov process can be used to model all the realizations
of a particular software system. A system of programs where the realizations of the program can be modeled
by a Markov process has the property that when the system is in any program state, the next program state
can be predicted without regard to previous states. It is possible to find program states that represent all
possible realizations for any software system. Therefore, a Markov model for a software system can serve
as the basis for usage testing for that software system.

Then to prepare usage tests, only two issues pertaining to the software need to be understood:

1. Program States - the status of the program at any one time.
2. Stimuli - what is being received next by the program to cause it to move to the next program

state.

The first task in developing a Markov model is to define the program states. A program state is the
status of a program from the user's perspective. The program state can always be determined from the Black
Box (specifications) for the software system. One does not need to know anything about the actual structure
of the program to be executed. A tester would like to characterize the status of the program and the next status
in which the program can exist. The goal is to calculate the probabilities of going from one program state
to the next (transition probabilities).

2/28191 The Cleanroom Engineering Software Development Process Page 8-13

SET-IR70 Section 8: Cleanroom Specirication Team Practices

Characterizing all of the program states is not trivial. A system can have a large number of states.
In these cases, program states can typically be represented by equivalence classes, each of which represent
multiple states. For example, if we are considering the sum from throwing two dice, the states (1,6), (2, 5),
(3, 4), (4, 3), (5, 2) and (6, 1) can all be viewed as program state 7.

A user moves from program state to program state by stimuli. To understand stimuli, one must
understand the probability of what the next user stimulus will be, given any program state. These
probabilities will add up to one. Each stimulus (or set of stimuli) will take you from one program state to
another (maybe the same state). The probability of moving from program state a to program state b is the
sum of the probabilities of the stimuli that will move you from program state a to program state b being
selected.

The program state analysis does a variety of things:

a) It randomizes control flow, and can also randomize data values.
b) Equivalence classes for data values can also be determined.
c) This includes looking at random spellings of a possible input word, and looking at classes of valid,

invalid and non-unique names.

At this time, a blank n by n matrix has been defined, which represents all program states. At this time,
one needs to determine the transition probabilities. This can be done in a variety of ways. Observing another
similar system in actual field use often gives a good assessment of what the usage profile is like. Other
methods of determining operational usage include interviewing or polling individuals familiar with the
intended use of the software system and developing and using a prototype. In the case where the system to
be developed is an enhancement or an extension of an existing system, the usage profile of the existing system
can be used as a starting point to be modified in an iilcremental manner through the use of the new features.
This type of approach will generally give an extremely accurate reflection of the expected operational usage
of the software system to be built. A matrix of transition probabilities is shown in Figure 8.4.2. Very often
it is more desirable to show only the non-zero transition probabilities in a table form as shown in Figure 8.4.3.

If one of the above options is not available, usage profile can be estimated by analyzing execution
paths.

Execution paths are sequences of stimuli which cause state transitions. The state transitions may
leave the user in the same state. The algorithm for constructing Markov transition probabilities from the
execution paths is as follows:

for all states

1. Determine execution paths/trees by starting at a state, and listing unique stimulus (i.e.,
keystrokes, sensor inputs) combinations that will result in a state transition. Some stimulus
combinations may be a part of an equivalence class.

2. Count the frequency of each state/stimulus used, or associate a probability with the selection
of each stimulus.

Page 8-14 The Cleanroom Engineering Software Detlapment Process 2/28/91

Sec$on 8: Ckeanroem Specirkation Team Pracices SET-UR70

3. Take the sum of all stimuli that take the program from one state to another. Enter that sum
into the corresponding position in the transition matrix. Divide each value in a row by the
sum of the row (to normalize the frequencies). Rows in the matrix (i.e., the probability of a
state transition) must add up to one, except for terminal states.

Figure 8.4.2 State Transition Matrix

State To:

1 2 3 4 5 6 7 8 9 10 11 12

S State 1 .25 .25 .25 .25
t State 2 .25 .25 .25 .125 .125
a State 3 .50 .50
t State 4 .50 .50
e State 5 .25 .25 .25 .125 .125

State 6 .25 25 .50
F State 7 .50 .50
r State 8 .25 .125 .125 .125 .125 .25
o State 9 .50 .50
m State 10 1.0

State 11 .25 .25 .50

Figure 8.4.3 Typical Usage Profile

Transition
From State To State Probability

SI_INITIAL SuP_ARROW 0.17
SI_INITIAL SIDOWNARROW 0.66

SIINITIAL SI_ENTERPROJECT_MANAGER 0.17
S IJP_ARROW SIENTEREXIT 1.0
SIDOWNARROW SIDOWNARROW 0.44

S IDO)WNARROW SI_ENTER NETWORKDEFINITION 0.12

SIDOWNARROW SI_ENTER-RELIABILITY_INFO 0.11

Si-DOWNARROW SIENTER-CERTIFICATIONMODEL 0.22

SIDOWN-ARROW SI ENTER EXIT 0.22

SI _ENTERPROJECTMANAGER S2-INITIAIL 1.0
SI_ENTERNETWORKDEFINITION S3_INITIAL 1.0
SIENTERRELIABILITY INFO S4INITIAL 1.0
SIENTERCERTIFICATION_MODEL S5_INTIAL 1.0
SI_ENTEREXIT S I_INITIAL 1.0
S2_INITIAL $2_UP ARROW 0.14
S2_INITIAL S2_DOWNARROW 0.14

S2_INITIAL S2_Fl 0.14

S2_INITIAL S2_F5 0.58

212V/91 The Cleanroom Engineering Software Development Process Page 8-15

SET-IR70 Section 8: Cleanroom Specification Team Practices

This three-step algorithm is explained in more detail in the following three paragraphs.

In constructing execution paths, one must determirne what is the usage of the system. Options include:
paths that a 'deliberate user' would follow, random paths, and paths based on the probability that a stimulus
would be selected. The execution paths can be represented in a textual (called execution paths) or a graphical
fashion (called decision trees). Examples of both representations appear in Figure 8.4.4.

Once execution paths have been determined, then state frequencies are calculated. State frequencies
denote the raw number of uses of a particular stimulus in a usage path. Dividing the frequency of a particular
stimulus by the sum of the frequencies for all stimuli that can appear in a certain program state gives the
probability that the particular stimulus will occur.

As a final step, the state frequencies are entered into a matrix. Sums are then taken for each row and
then each element in the row of the matrix is divided by the sum. The result is now the Markov Transition
matrix. Most of the values in the matrix will be zero although all rows, except terminal states, add up to one.
This step is illustrated in Figure 8.4.5.

When the Markov model is complete, the long run probability distribution for the states can be
calculated by generating the Markov chain for the matrix. The long run probabilities will list the states that
are not used much, which may justify the elimination of parts of the system. Additionally, the long run
probabilities show, on the average, how many test cases must be run to function certain features.

The process of creating a usage profile may initially seem to be an intimidating or impossible task.
In fact, the process is just a modeling problem. It may not always be a simple modeling problem, but it is
just a modeling problem. The steps in the process that are mentioned define an algorithm for determining
the usage profile. Usage states and transition probabilities will be determined through analysis. A number
of relatively complex software systems have been described in this manner, the task of creating that
description was not always trivial but was always possible to do in a manageable amount of time.

Page 8-16 The Cleanroom Engineering Software Development Procers 2/28/91 I i

"Section 8: Cleanroom Specorfcadion Team Practices SET.R70

Figure 8.4.4 Execution Path and Decision Tree Examples

Initial-I
Project Manager; Screen-2
Up-arrow; Exit System
Down-arrow

Network Definition; Screen-3
Down-arrow

Reliability Information; Screen-4
Down-arrow

Certification Model ; Screen-5
Down-arrow ; Exit System

Screen-2

Initial-I Up-arrow Exit System Screen-3

,o S0Screnn-4

Exit System

2/28/91 The Cleanroom Engineering Software Development Process Page 8-17

SET-IR70 Section 8: Cleanreom Spec#fcation Team Practices

Figure 8.4.5 State Frequencies and State Probabilities

From To Sum

Initial-1 PM Up-arrow Down-arrow

1 1 4 6
1/6 1/6 4/6 1

Down-arrow ND RI CM Exit Down-arrow

I 1 1 2 4 9
1/9 1/9 1/9 2/9 4/9 1

Page 8-18 The Cleanroom Engineering Software Development Process 2/28/91 -

SET.IR70

Section 9
Cleanroom Development Team Practices

In this section the Cleanroom Project cycle is examined from the vantage point of the Development
team. In the Cleanroom environment the development team has a well-defined mission which is stated as
follows:

Given a function (specification) which is to be implemented in software, find a rule (the program)
that correctly implements the function.

In performing this mission the Development team is performing the engineering tasks defined in
Process E18: Develop Increment i and in Process E24: Correct Code Increment l...j in section 4. The
Development team also contributes to performing the work defined by the three processes that have to do
with understanding the problem and solution domains:

E12: Understand Problem Domain
E13: Understand Solution Domain
E21: Increase Understanding of Problem and Solution Domains as Required

The principal effort is devoted to accomplish Process E18. This section is devoted to discussing their
performance of the engineering tasks associated with this process. When the Development team contributes
to the other processes in the capacity of software developers, they use the same software development
capabilities as discussed here. When they are performing other tasks on the software project, they may use
any of the tools available to software engineers or to other engineers and analysts. These are not discussed
in this section. In addition, the Development team contributes to performing the project overhead tasks as
required. These include

E7: Maintain Project Schedule
E8: Prepare for and Conduct Project Review
E9: Prepare and Submit Status Reports
El 1: Submit a Question or Issue.

The Development team or teams implement the specification for the entire software system
increment by increment. The construction plan, which is volume six of the specifications, has decomposed
the specifications into sub-specifications, one for each set of accumulating increments. That is, increment
1, increments 1 + 2, increments 1 + 2 + 3 and so on. A Development team is responsible for each increment.
In the balance of this section, discussion is limited to the Development team working on a single increment
without any loss of generality since an increment is the basic work unit for a development team.

The Development team is provided with a well-defined specification for the increment. For a
specification to be well defined, it must clearly define the function that the software is to perform. The
Development team must then find a rule that efficiently implements the specification. In addition, they must
verify by logical/mathematical argument that the rule found correctly implements the function. They
perform verification by logical argument to minimize to the maximum extent possible the most error-prone
activity associated with software development - debugging.

2/28/91 The Cleanroom Engineerinh Software Development Process Page 9-1

SET-IR70 Section 9: Cleanroom Development Team Practices

The Cleanroom environment provides the Development team engineers with several important
features facilitating their search for a rule that correctly implements the specification. These facilities
include:

Developers use an iterative approach in software development by performing many small steps on
the path of finding a correct rule for the given function. Each small design step is then immediately
followed by a verification to show that the function resulting from the design step is equivalent to
the function prior to the design step. This process is called Stepwise Refinement With Verification.
The expansions and verifications at each step are guided by mathematical principles that computer
programs and systems of computer programs must observe.

Developers use well-developed mathematics to guide software development and verification. The
mathematics of a computer program is developed in Structured Progmamming: Theory and Practice
by Linger, Mills and Witt, Addison-Wesley, 1979. The mathematics of a system of computer
programs is developed in Principles of Information Systems Analysis and Design by Mills, Linger
and Hevner, Academic Press, 1986. An algorithmic procedure to design software systems which
exploits the mathematics of a system of programs as developed in Mills, Linger and Hevner is defined
in "Stepwise Refinement and Verification in Box-Structured Systems" by Mills, IEEE Comuter,
June 1988. Specifically, the Development team uses Box Structures to ellocate the function for the
entire increment to the programs that make up the increment and determine what state data to invent
to act as surrogate for the stimuli histories. Then once the functions for each Clear Box have been
determined the functions are further refined until all subfunctions connected by programming
statements are executable in the target programming language. Both of these strategies revolve
around using Stepwise Refinement with verifications between each such refinement.

Developers work in a team since it has been found that verification arguments or proof conversations
are best performed in a group rather than on a solo basis.

Developers do no compilation or computer testing in order to avoid the most error-prone activity
associated with software development. It has been observed that when a change is made to a software
program to correct a malfunction in a test or debugging environment that often the result is a
correction of the currently observed problem and in addition a deeper logic error is inserted in the
software that will cause a failure in subsequent usage. The two events of making the fix and observing
the failure induced by the fix are often separated by a great deal of time. A rule of thumb used by
some software development organizations is that on the average one time in five the result of a
software fix is that a deeper logic error is unintentionally designed into the software that will be
observed sometime latter. These organizations believe that certainly as often as one time in ten the
result of the fix will be deeper logic error that will cause a subsequent failure. It is these odds that
make advanced software development organizations attempt to minimize the number of fixes made
to software. This relationship between fixing observed failures and introducing new faults that will
result in failures to be observed subsequently that make it nearly impossible and certainly very
expensive to test quality into software. Additionally, since developers do no testing it has been
observed that they are more careful in the desigri and coding process. That is why in the Cleanroom
approach the stress is on designing in quality and minimizing corrections due to testing.

Page 9-2 The Cleanroom Engineering Software Development Process 2/28/91

"Section 9: Cleanroom Development Team Practices SET-RO70

The general concepts defined above give the Development team the ability to write largely failure-
free software. In subsequent subsections, those topics will be discussed in detail in the order listed below:

1. Stepwise Refinement
2. The Box Structures Design Algorithm
3. Box Structures Verifications
4. Stepwise Refinement Using Structured Programming
5. Structured Programming Language Verifications
6. Conducting Proof Reviews
7. Working With The Certification Team
8. Working With The Specification Team

9.1 Stepwise Refinement

The Software Development Problem: Given a function, say F0, which is to be implemented in software in
a given programming language for a given computer.

The Stepwise Refinement Algorithm:

Initialization: Let i = 0.

Step 1: Find a new function F.., which is equivalent to F, where some part of the F. function has been
decomposed into subfunctions connected by programming statements.

Step 2: Show that function F1÷, is equivalent to F.

Step 3: If all the subfunctions in the new function Fý, are executable in the desired programming
language, terminate with the desired rule for the function; otherwise, increment i and loop to Step
1 to continue the stepwise refinement algorithm.

Ver-ificatiQLn Of promm Correcness:

Assume the algorithm terminates after n iterations with function F,,, which has been shown to be
equivalent to F3, which has been shown to be equivalent to %.,, and so on to F,, which has been shown
to be equivalent to F0 which is the given function. By this chain of logical reasoning, if no human
error occurred, the program is a correct rule for the given function.

As we all know, humans are fallible so it is possible that the rule as found does not correctly
implement the function. The question arises that if humans are very error prone, the Stepwise
Refinement Algorithm would not be very useful since most times the resulting rule would be an
incorrect rule for the given function. The pleasant surprise is that when the software developers work
as a Development team using this simple algorithm guided by the proof rules as developed in
Structured pro'ramming: Theory and Practice, they have a high probability of finding a rule that
correctly implements the function in the vast majority of the situations.

2/28/91 The Cleanroom Engineering Software Development Process Page 9-3

SET-IR70 Section 9: Cleanroom Development Team Practces

9.2 The Box Structures Design Algorithm

The software design problem can be described in four questions:

a) What objects?
b) What secrets to hide in each object?

- What data to encapsulate?
- What processes to supply?
- What algorithm to use for each purpose?

c) What is the consumer/supplier relationship between objects?
d) What is the structure of the interface between objects?

Four necessary conditions are currently known which a solution to the software design problem must
observe:

a) Hide all data in data abstractions or objects.
b) Define all processing by sequential or concurrent usage of data abstractions.
c) Migrate usage of each data abstraction to the lowest place possible in the usage hierarchy.
d) Maintain referential transparency between defining responses in terms of stimuli histories and

the state data selected to be used to represent the stimuli histories.

As a result of understanding the design problem and the necessary conditions, a strategy for box
structure design becomes clear. One must directly solve the software design problem subject to identified
necessary conditions. Also, one must use stepwise refinement and verification to establish intellectual
control over the inventive process.

The Box Structure design strategy is to build the module structure top-down inventing state data, state
data maintenance functions, process performance functions and intermodule communications in the logical
top-down stepwise expansion, ordering with verification at each step.

A Black Box description of a data abstraction is a function on the set of stimuli. Black Box functions
are implementation free. The function to be performed is stated entirely in terms of the inputs (stimuli) that
the abstraction has received. The Black Box defines all responses in terms of stimuli histories for this and
all other stimuli. For that reason, each subfunction is defined in the notation of S*USi, which defines the
sequence of all previous stimuli along with the present stimulus Si. A Black Box sub-function to change the
password for a buoy system (from EEE Comput June 1988) appears below:

Black Box sub-function for S*11S4: change password command and data is
E4: if no shutdown command since last restart command

then
if password correct * and no restart command or shutdown command

then
confirm password change

fi
ft

• where password correct represents the password most recently entered during a password
change, or is 'buoy' if a password change has not been a part of stimulus history

Page 9-4 The Cleanroom Engineering Software Development Process 2/28/91

- Section 9: Cleanroom Development Team Practices SET-IR70

Black Boxes are a completely general means of describing and analyzing behavior. Their focus on
expressing behavior in terms of stimuli and responses describes how users actually deal with a system -- free
of all internal processing details. Interactions between Black Boxes are completely arms length -- no shared
data -- a supplier/consumer relationship.

With a State Box, data abstractions store data between stimuli in order to respond to the effect of prior
stimuli. Information hiding requires that such stored data be part of the abstract state of the abstraction. Data
can be stored in any form as long as it correctly represents all previous stimuli. One such correct
representation is to store the history of all prior stimuli.

Classical state machines are not useful in hierarchical systems when data needs to be migrated to
different levels in the hierarchy. The State Box generalization provides the solution by determining the state
and response for each stimulus. State Boxes can then be distributed throughout the usage hierarchy. State
Boxes begin to add implementation details. State data to act as a surrogate for stimuli histories have been
selected to be maintained at this level. The Black Box function is rewritten by substituting state data as
appropriate and to reflect required state data maintenance. An example of a State Box sub-function appears
below (repeated lines from Black Box are shown in bold text):

State Box sub-function for S4: change password command and data is
E4: if 'buoystatus' on

then
if password in stimulus= 'password' and no restart command or

shutdown command
then

con
confirm password change
update 'password'

noc
fi

fi

In this notation, 'buoy-status' and 'password' had been selected to be state data that will be stored
at this level, and are serving as surrogates for a part of the stimuli histories that pertain to whether the buoy
is on or off and the current password in storage.

The next step in defining the data abstraction is to define the State Box transformation function in
more detail -- in terms of the Black Boxes to use at the next lower level in the hierarchy. Theorems and
experience with structured programming lead to direct definition of four kinds of Clear Boxes: sequence,
alternation, iteration and concurrency. All of the theory and experience with structured programming and
stepwise refinement carry forward into Clear Boxes. Clear Boxes can be documented in many forms,
including: English, pseudo code, flow diagrams, and a programming language. Clear Box functions
complete design details for that level. To derive the Clear Box, the State Box function is modified to
(1) complete details for maintenance of state data and (2) invocations of lower level Black Boxes. An
example of a Clear Box (from the same buoy problem example) appears below:

2/28/91 The Cleanroom Engineering Software Development Process Page 9-5

SET-IR70 Section 9: Cleanroom Development Team Practices

Clear Box buoy

case stimulus is

part S6: air temperature data
con

acknowledge air temperature data
use airtemperature(S6, 'air temperature running average') to update the air temperature
data

noc

end Clear Box buoy

A notation has been devised for Black, State and Clear Boxes. This notation can appear in two
formats: as pseudo code and as a program table. The pseudo code approach is the style seen in the examples
above. The formal notation for Black, State and Clear Box pseudo code appears in Figure 9.2.1.

A program table describes the logic in terms of conditions and data value modifications. The table
lists possible conditions on the x-axis and responses and state data/local variable on the y-axis. For each
condition, the corresponding data value changes are noted. Two alternate notations for a Black Box program
table and a State Box program table appear in Figure 9.2.2. Program tables are also useful designing resolve
logic.

Some organizations may want to modify the notation just presented in order to make it fit better in
the organization's environment. The notation does not need to be identical to the format presented earlier,

but it does need to be just as formal, readable and rigorously usable.

The Box Structure design algorithm is defined in Figure 9.2.3. At any step during the algorithm, it
may be determined that any of the previous inventions were incorrect. In that case, that step will be redone
in order to create a better invention. The process of design and redesign for one iteration of the loop will be
done until the developer and Development team is convinced that they have created a correct set of
inventions.

Once Clear Boxes have been created, they are refined, using the concepts to be defined in Sections
9.4 and 9.5. The refinements continue until correct and efficient code is developed. Each refinement needs
to be verified to the previous refinement. Of course, the initial refinement is verified to the Clear Box.

Pagr 9-6 The Clwenrma Engineering Sqflw're Development Process 2/2891

- Secdon 9: Cleanroom Development Team Practices SET-ER70

Figure 9.2.1 Syntax for Box Functions

-- ----- ------- ------- ----- --BLACK BOX FUNCT'IONS- -----------

black box <boxname>
stimuli:

SI: <name> I <description/iformation> [: <type>]

responses:
Ri: <name> I <description>

begin black box function for S* II S: <boxname>

black box sub-function for S* II S: <stimuliname> is

<black box pseudocode> I <black box program tables>

[end black box sub-function for S* II Si: <stimuliname>]

[end black box function for S* 11 S <boxname>]
[end black box <boxname>]

<black box pseudocode> ::= <black box statement> +

<black box statement>::=

<assignment statement assigning a constant to a response> I

<definition of a response in terms of stimuli histories and/or previous responses> I

if <condition in terms of stimuli histories and/or previous responses>
then

<black box statement> +
[else

<black box statement> + I
fi

Notes:
Reserved words: lower case in bold, only one per line
Indentations: two spaces
Stimuli, responses and black box functions are almost
always recorded separately.

Figure 9.2.1 Continued on Following Page

2/28/91 The Clenroom Engineering Software Development Preces Page 9-7

SET-IR70 Section 9: Cleanroom Development Team Practices

Figure 9.2.1 Continued

-- STATE BOX FUNCTIONS ----
state box <boxname>
stimuli:

S I: <name> I [<descriptionfinformation>] I [: <type>]

responses:
R l: <name> I <description>

state data:
El: <name> I [<description information>] I [:<type>]

begin state box function for S: <boxname>

state box sub-function for S I : <stimuliname> is

<state box pseudocode> I <state box program tables>

[end state box sub-function for SI: <stimuliname>]

[end state box function for S <boxname>]
[end state box <boxname>]

<state box pseudocode> ::= <state box statement> <state box statement> *
<state box statement>

<assignment statement assigning an expression in terms of constant(s), current stimuli, state
data to a response> I
<definition of a response in terms of state data, current stimuli, stimuli histories and/or previous
responses> I
<assignment statement assigning an expression in terms of constant(s), state data, current stimuli
to a state data> I
<definition of a state data in terms of state data, current stimuli, stimuli histories and/or previous
responses> I
if <condition in terms of state data, current stimuli, stimuli histories and/or previous responses>

then
<state box statement> +

[else
<state box statement> + J

flI
<concurrent control structure>

Figure 92.1 Continued on Following Page

Page 94 The C .m.ro.m Engineering Software Development Process 2128/91

Secton 9: Clanroom Development Team Practices SET-IR70

Figure 92.1 Continued
- CLEAR BOX FUNCTIONS- -

clear box <boxnarne>

stimuli

<stimulus name> <type>

responses

<response name> <type>

state data

<state data name> : <type>

procedure <boxname>

data

<local data name> : <type>

begin

<procedure statements>

end

end procedure <boxname>

end clear box <boxnamne>

<procedure statement> ::= <assignment> I <control structure> I <box statement>

<assignment> ::= <variable> := <expression>

<control structure> ::= <sequence> I <alternation> I <iteration> I <concurrent>

<box statement> ::= use <boxname> (<stimuli name> <,stimuli name> *,
<response name> <,response name> *)

Notes:
Reserved words: lower case in bold, only one per line
Indentations: two spaces.
Keywords: only one per line
Any consistent syntax for assignment, sequence,
iteration, alternation and box statements are satifactory

--- ------- ----- ----- NOTATION -------------------------

or
is an instance of

[f optional
+ one or more occurences
* zero or more occurences

End of Figure 92.1

211/91 The Cleanroom Engineering Software Development Process Page 9-9

SET-IR70 Section 9: Cleanroom Development Team Practices

Figure 9.2.2 Program Tables for Box Structures

black box sub-function for conditions in terms a separate column for each
S11 Si: of stimuli histories and/or possible combination
<stimuliname> prior responses of conditions

first possible <responsename> <constant>
or
<definition of a response in terms
of stimuli histories and/or previous
responses>

a separate row for each I
possible response from
this stimuli

OR

black box sub-function for conditions in terms a separate column for each
S*J1 SI: of stimuli histories and/or possible combination
<stimuliname> prior responses of conditions

<assignment statement assigning a
constant to a response>

responses and/or
<definition of a response in terms
of stimuli histories and/or previous
responses>

state box sub-function for conditions in terms of current a separate column for
S*IJ Si: <stimuliname> stimuli, state data, each possible

stimuli histories and/or combination of conditions
prior responses

<expression in terms of constant(s), state

a separate row for each data, current stimuli> I
possible response from thi <definition of a response in terms of state

stimuli data stimulisistories and/or previous
responses>

<expression in terms of constant(s), current
awfor each state stimuli, state data> I <definition of state data

atseparate row at th le in terms of state data, current stimuli,
data maintained at this level stimuli histories and/or previous responses>

Page 9.10 The Cleanroom Engineering Software Development Process 2/28/91

Secaon 9: Clawvoom Development Team Practices SET-1R70

Figure 9.2.3 The Box Structures Software Design Algorithm

Define Black Box

1. Define stimuli (List all inputs to the system).
2. Define responses in terms of stimuli histories (Create the Black Box sub-functions and the

software system responses).
3. Validate Black Box (For the first level Black Box, this is done by showing that problem

description and Black Box function are consistent. The verification for the first level Black Box
for the entire software system is recorded in the specifications. For lower level Black Boxes, this
is done by showing that the Black Box function definition in the previous level's Clear Box and
the Black Box function are consistent.).

Define Slate Box

4. Define state data to represent stimuli histories (Define surrogates that will preclude the need to
continually handle stimulus histories by replacing the portion of stimulus history that needs to
be preserved.).

5. Select state data to be maintained at this level (Determine which surrogates will be best stored
at this level. This is a major step, and is a prime opportunity for the use of trade studies.).

6. Modify Black Box function to represent responses in terms of stimuli and the state data being
maintained at this level (Create the State Box sub-functions, with data defined in terms of stimuli,
state data and stimuli histories.).

7. Record type of references to state data by stimuli (Determine where and how each state data item
is used by the sub-functions. This activity supports steps 8 and 9.).

8. Verify State Box (This is done by showing that the Black Box and State Box define the same
function -- see section 9.3.).

Define lear Box

9. Define data abstraction for each state data (Determine state data type, making it more concrete.
The data types for the state data can include stack, integer, queue, array, etc.).

10. Modify State Box function to represent responses in terms of stimuli, this level's state data and
invocations of lower level Black Boxes (Create Clear Box functions using stimuli, state data,
local data, and lower level boxes).

11. Verify the Clear Box (This is done by showing that the State Box and the Clear Box define the
same function -- see section 9.3.).

12. Continue until all Black Boxes are expanded.

2/28/91 The Cleanroom Engineering Software Deveopment Process Page 9-11

SET-IR70 Section 9: Cleanroom Development Team Practices

Use of Box Structures provides:

a) Definition of objects and data abstractions.
b) Data abstractions migrated to lowest feasible level.
c) Data and process treated equally in each step.
d) Processing defined precisely for all objects.
e) Verification at each step of the design.
f) Real time processing.
g) Inventions separated into clearly identified small steps.
h) Details included throughout the design process so their late addition does not damage the design.
i) Complete design trail stored in Box Structure representation.
j) Intellectual control over the design process.

9.3 Box Structures Verifications

Mappings exist to map State Boxes into Black Boxes and Clear Boxes into State Boxes so each design
step can be mapped back to its parent box to verify that the design is proper. The verification procedure
permits the designer to know the design is correct each step of the way. For stepwise verification, structured
design using box structures must proceed from the top down. To facilitate thinking when designing and
programming, humans need to explore ahead of the top-down design with bottom-up thinking.

The strategy when verifying box structures is to re-derive the higher level box, and then compare the
original higher level box with the re-derived higher level box. This concept is illustrated in Figure 9.3.1. The
re-derivation process is made easier by using the following numbering scheme:

a) Number all Black Box statements BI...Bn.
b) For all State Box statements that did not appear in the Black Box, number those statements

SL...Sn.
c) For all Black Box statements that were modified in creating the State Box, number those

statements BSi, BSj, ...
d) For all Clear Box statements that did not appear in the black or State Box, number those

statements Cl...Cn.
e) For all Black Box statements that were modified in the State Box and are now modified in creating

the Clear Box, number those statements BSCi, BSCj,...
f) For all State Box statements that were modified in creating the Clear Box, number those

statements SCi, SCj, ...
g) For all Black Box statements that were modified in creating the Clear Box, number those

statements BCi, BCJ, ...

To verify the state or Clear Box, one must check that the following the conditions are true:

a) Are all statements in the re-derived box that were modified from the original box (i.e., the BS,
BSC, SC or BC statements) equivalent to those that were in the original box?

b) Are all lower level box statement that are new in the lower level box (i.e., the S statements in the
State Box or the C statements in the Clear Box) all either keywords or used in confirming that
condition a is true?

Page 9-12 The Clemnroom Engieering Software Development Process 2125/91

Sectlon 9: Cleaareom Development Team Practices SET-ER70

Figure 9.3.1 Expansion and Derivation Between Box Structures

rlack Box

Derivation: Expansion:
Eliminate State State Box Introduce State

L s/J, 2State
S R

Derivation: Expansion:
Eliminate Procedure Introduce Procedure

L Clear Box
r --------------- J State

S •;R

c) Are the logical conditions for every higher level box statement (i.e., the B statements in the State
Box and Clear Box, the S statements in the State Box, or the BS statements in the Clear Box) occur
under the same logical conditions that they did in the higher level box?

9.4 Stepwise Refinement Using Structured Programming

The goal, once the Clear Box is derived, is to make a series of refinements that will lead to code,
specifically, a structured program. Structured programs are programs which:

a) Have only one entry and exit
b) Use only sequence, selection and iteration statements.

Any flow chartable program can be expressed as a structured progr~n. Structured programs can be
written in any order -- it is only the order at execution that is important. Structured programs have
mathematical properties that arise from the analysis of functions that permit people to reason about their
correctness. The correctness or any construct in a structured program can be determined by reference to only
the constructs that precede that construct in execution in the final program.

2/28/91 The Cleanroom Engineering Software Development Process Page 9-13

SET-IR70 Section 9: Cleanroom Development Team Practices

Experience indicates that humans typically develop more correct and complete programs when
statements are developed for the final program 'top-down.' However, experience indicates that humans
typically need to engage in 'bottom-up' thinking to refine their ideas prior to starting the final 'top-down'
development of the program. The 'top-down' development approach is the basis of stepwise refinement.
The approach is illustrated in Figure 9.4.1. When working with structured programs there are three
operations that can be performed: function abstraction or reading, function expansion or designing and
function comparison or verifying. When reading a program the reader is given a rule and then reads the
program by deriving the function. When writing or designing a program the writer is given a function which
is expanded into a rule. When verifying a program the verifier is given a function and a rule which are
compared by deriving a function from the given rule and then comparing the derived function to the given
rule. These ideas are diagramed in Figure 9.4.2

Figure 9.4.1 Stepwise Refinement

ORDER OF INCLUSION -- LEFT TO RIGHT
ORDER OF EXECUTION -- TOP DOWN

First Refinement Second Refinement

proc[proc [proc [

F
0 if[] if[

endproc P1 P1

then then
F, F4

F 5

else else
F 2 F 6

F 7
fi fi

F3 F 3

endproc endproc

Notes:
[] functional commentary

Page 9-14 The Cleanroom Engineering Software Development Process 2/28/91 3

Section 9: Cleanroom Development Team Practices SET-ER70

Figure 9.4.2 Program Abstraction, Expansion and Comparison

1 proc r 1 proc r 1 proc r
2 a 2.1 while 2.1 while
3 b 2 p 2 p
4corp 3 do 3 do

4 c 4.1 d
5 od .2 e

3 b 5 od
4 corp 3 b

4 corp

.- READING a'

S'WRITING

4 • VERIFYING O-

The creation of structured code is done by selecting one of the structured programming constructs
(sequence, iteration or alternation). Selecting the construct for a correct 'top-down' expansion must be well
thought out. An example that presents a correct and incorrect expansion of a function into an initialized while
loop is shown in Figure 9.4.3.

There are a number of rules that developers need to follow when designing and coding in order to
increase the probability of writing correct code. These rules are often organization specific, although a
number of them are probably universal. Useful rules are listed in Figure 9.4.4.

Code must be commented. Functional commentary typically takes a variety of forms. With
Cleanroom, the functional commentary is the previous level of refinement, since that defines the intended
function that the code (or lower level of design) will implement. Additional commentary can appear after
structures in order to represent the post-condition of an implemented function. The functional commentary
needs to be formal and precise so that the developer will be able to verify that the implemented function is
equivalent to the intended function (that is, the functional commentary).

A number of benefits occur when using the above-mentioned concepts of structured programming.
Programs are easier to write, easier to read, easier to verify and cost less. Also, software development moves
from a private art to a public science. Finally, design and code written in this manner begins to give a firm
basis for easier maintenance and reuse.

2/28/91 The Cleanroom Engineering Software Development Process Page 9-15

SET-IR70 Section 9: Cleanroom Development Team Practices

Figure 9.4.3 Stepwise Expansion

- Given function f to expand, with foreknowledge it will end up with an initilized iteration:

- Consider the two paths to construct final design:

YES path NO path

The~~ NOpthmks.osns

and

While on the YES path, each combination of subfunctions is equivalent to the part function. The YESpath represents a logical thought process. The NO path represents an illogical process. Sloppy

thinking leads to sloppy programs which result in errors.

Page 9-16 The Cleanroom Engineering Software Development Process 2/28/91

Section 9: Cleanroom Development Team Practices SET-MR0O

Figure 9.4.4 Useful Rules to be Followed When Writing Code

a) Keywords appear in bold, lower case print.
b) Keywords always begin a line.
c) Nested levels of code are indented two spaces more than previous levels of code
d) Constant names are in upper case print
e) Variables have the first letter in upper case followed by the rest of the variable name in lower

case. Variable names may be multiple words separated by an underline (the first letter of
each word should be capitalized).

0 Use only four basic structures for structured programs (sequence, iteration, alternation and
concurrency).

g) Use abstract data types to manipulate data (i.e., use lists and queues rather than arrays).
h) Always include function comments to describe what function is intended. Write the function

before expanding the function into code.

Some practical rules for structured programming are as follows:

a) The first abstraction is the most critical and the most difficult. It must be thoroughly thought out
before it is determined. The abstraction needs to be one that can be easily verified to the problem
specification.

b) Write design and code simply
c) Write design and code in an incremental manner
d) Refine each abstraction into an more detailed abstraction that is easy to prove. If it is not easy

to prove, then redesign it.

e) First develop complete programs that are provable and then refine them to achieve efficiency,
operation on the target processor, etc.

f) Never be afraid to start over. It will save a lot more time than trying to make a mediocre
abstraction correct.

g) The last design is the best one, not the first.

9.5 Structured Programming Language Verifications

Functional verification is a procedure that enables software engineers to:

a) Write programs,
b) Read programs,
c) Verify the correctness of a program,
d) Design programs,
e) Read designs, and
f) Verify the correctness of a design,

by exploiting the fact that a program is a rule for a mathematical function. The correctness theorem, which
is the formal rule for functional verification, appears in Figure 9.5. 1.

2128/91 The Cleanroom Engineering Software Development Process Page 9-17

SET-IR70 Section 9: Cleanroom Development Team Practices

Figure 9.5.1 The Correctness Theorem

For any function f and program P, correctness is defined by a condition C for

1. Complete correctness (f=[P])+--(term(fP)Af=I(X,Y) I C(X,Y)))

2. Sufficient correctness (fc[P))+-4(term(fP)Afc[(X,Y) I C(XY)))

Where P and C are:

P C(X, Y)

Case (sequence):
g;h Y = h g(X)

Case (ifthenelse):
if p then g else h fi (p(X) - Y = g(X)) A

(- p(X) -+ Y = h(X))
Case (whiledo):

while p do god (p(X) -- Y = f g(X)) A
(-p(X) -- Y X)

Case (fordo):
for i:e L(l:n)dogood Y-=-g• ") g... (M
(gLk) is the function of the kth dopart iteration)

Case(ifthen):
if p then g fi (p(X) -+ Y = g(X)) A

(- p(X)-Y = X)

Case (case):
case p part (CL1) g ... (p(X) E CL1 -4 Y = g(X)) A
part (CLn) h else t esac ...

(p(X) e CLn -+ Y = h(X)) A
(CL short for caselist) (p(X) ie (CL1, ..., CLn) -+ Y = t(X))

Case (dountil): (p g(X) -4 Y = g(X)) A
do g until p od (-p g(X) -* Y = f" g(X))

Case (whiledo):
dol g while p do2 h od (p "g(X) -- Y = f" h "g(X)) A

(- p g(X) -+ Y = g(X))

Note that term (fP) is always true for loop-free programs but this formulation permits a unified treatment
of loop-free and looping programs alike.

Page 9-18 The Clanroom Engineering Software Development Process 2/28/91 1

- Section 9: Cleanroom Development Team Practices SET-IR70

There is quite a bit of notation in this section that needs to be explained. The o in the sequence case
is a mathematical composition (i.e., h o g(X) means 'h follows g(X)'). The - in the ifthenelse case (and also
in others) represents the negation of a statement (i.e., - p(X) means 'when p(X) is not true'). The epsilon
in the fordo case means 'is an element of.'

The theorem is stating the following:

An intended function f is equal to (or a subset of) the function of the program P if and only iff
and P have the same termination conditions and the function f equals (or is a subset of) the set
of ordered pairs (X,Y), where X represents the input states and Y represents the output states,
given the condition C(X,Y) is true. The conditions C(X,Y) for each type of structure that can
appear in structured code is listed.

The formal rules can also be stated in the form of working questions, as shown in Figure 9.5.2.

Figure 9.5.2 Working Questions for Program Correctness

For every possible argument required by a program specification:

Case sequence = [firstpart; Does sequence equal firstpart
(sequence): secondpart] followed by secondpart?

Case ifthenelse = pir When iftest is true does ifthenelse equal
(ifthenelse): iftest thenpart?

then When iftest is false does ifthenelse equal
thenpart elsepart?

else
elsepart

ri.

Case whiledo = [while Is loop termination guaranteed for any
(whiledo): whiletest argument of whiledo?

do When whiletest is true does whiledo equal
dopart do part followed by whiledo?

od] When whiletest is false does whiledo equal
identity?

Case fordo = [for Does fordo equal firstpart followed by
(fordo): indexlist secondpart ... followed by lastpart?

do
departod]

Case ifthen = [if When iftest is true does ifthen equal thenpart?
(ifthen): iftest When iftest is false does ifthen equal identity?

then
thenpart

il]

Case dountil = [do Is loop termination guaranteed for any
(dountil): dopart argument of dountil?

until When untiltest after dopart is false does
untiltest dountil equal dopart followed by dountil?

od] When untiltest after dopart is true does
dountil equal dopart?

2/28/91 The Cleanroom Engineering Software Development Process Page 9-19

SET-IR70 Section 9: Cleanroom Development Team Practices

In order to prove the correctness of programs, the strategy is to use the techniques, specifically:

a) Know the proof rules
b) Read and abstract programs
c) Hypothesize and substitute functions
d) Reach informed correctness conclusions
e) Conduct team proof reviews.

Programs are to be written for verification. Specifically, a program needs to be refined in a manner
that will make verification as easy as possible. There will be a series of refinements, leading from the Clear
Box to the code. Making each refinement small will also make it simpler, easier to understand and easier
to verify.

The formal proofs are done using the trace table notation, where the function of each line of code is
reflected in modifications to variables and conditions. An example of a trace table for a segment of code
appears in Figure 9.5.3.

An extra moment must be spent explaining the iteration structure (the while loop). Conceptually, a
terminating while loop that will terminate in at most N iterations can be represented by a sequence of N
alternation (if-then) structures. In order to prove the correctness of a while loop, one must first prove
termination, and then prove that the while loop is equivalent to some sequence of if-then structures. This
concept, known as the Iteration Recursion Lemma, is more formally defined and illustrated in Figure 9.5.4.
A trace table for a while-loop is shown in Figure 9.5.5. In this trace table, line 2 represents the first if-then
structure. The third line represents the effect of zero or more repetitions of the if-then structures by the
Iteration Recursion Lemma

In verifying programs, a balance between formal procedures and economy of effort must be reached.
This can be achieved by realizing that large programs have simple parts ,that:

a) For the most part are better verified by direct assertions, and
b) Lead to the use of formal verification on an exception basis.

Any correct program can be verified. If it is unstructured, it may need first to be structured; but
verification is always possible. Unfortunately, programs not written using stepwise refinement with
functional verification will often be extremely difficult to verify. This occurs because most of these
programs were not written to be verified; that is, they were not written in a simple, easy-to-read manner, using
consistent refinements. Corrections made during debugging also make the code less readable. Programs
written using the concepts of stepwise refinement and functional verification are relatively easy to verify.
Most programs can be verified by direct assertion, without the need to do a detailed and complicated formal
verification.

Some practical rules for verification are as follows:

a) Code should be provable by direct assertion.
b) Code that must be proven formally should have a proof that is easy to understand.

Page 9-20 The Cleanroom Engineering Software Development Process 2/2"91

Section 9: Cleanroom Development Team Practices SET-RO70

Figure 9.5.3 Trace Table for Sequence Structure

- T race table:

part w x y z

I w:=x+y W =xo+Yo

2 x:=y+z 1
3 y:=z+w y =z2 +W322
4 z:=w+x z4 =w 3 +x 3
5 w:=y-z w =y -z

6 x:=z-w x 6z5- w5
7 y:=w-x y =w -x

8 z:=x-y z 8=6x 76

- Derivations:

w8=w x =x
8 5 8 6

=Y4 -z 4 =z 5-w5
=y -w -x -Z -y +Z=2+W2 2-x 2 = 2~z 4" _Y433344 4 "

=z+w 2-w2-x

=Z- x =2w +2x -y
1 -W 2 2 2= ZoY-y z I = 2w I+ 2x 2-z_2-w 2

=z -y = 2w I+2y +2z -z 1w
=w l+2y I+Z 1
=0 x +y +2y +z0

x 0 +3y 0 +z 0

Etc.

- Program function:

w,x,y,z:=-y ,x+3y+z,-x-4y-z,2x+7y+2z

c) If proving a code unit formally is complicated or difficult to prove, then re-design and re-code
the code unit.

d) When a verification is complete, there are two additional conditions that will help validate the
correctness of the proof. Those conditions are:
1) Is the entire domain for the function covered (i.e., is the function complete)?
2) Are all calculations and manipulations correct (i.e., is the function correct)?

e) Use functional commentary to define what the refinement will do, and what it has done.

2/28/91 The Cleanroom Engineering Software Development Process Page 9-21

SET-IR70 Section 9: Cleanroom Development Team Practices

Figure 9.5.4 Iteration Recursion Lemma

Iteration Recursion Lemma.

Given functions f, g, h, and predicate p

(f-=[while p do g od])

(term(f, while p do g od)A

f=[if p then g;f fi])

* Proof idea (whiledo)

Equivalence of flowchart forms:

Section 9.6 Conducting Proof Reviews

In addition to verifying the correctness of any level of design or code individually, the proof must
then be reviewed by the entire Development team. This is to minimize the probability of human fallibility,
since a number of different people will look at the same item. Additionally, the review confirms the
correctness of the proof, which in turn, proves the correctness of the design.

The manner in which reviews are conducted are dependent on the organization, project, team and
invention to be reviewed. The frequency with which reviews are conducted are also dependent on the project
and invention to be reviewed. For example, in some projects, the team may determine that there is no need
to pass out material to be reviewed before the review, because there will be a walkthrough as a part of the
review, and if any part of the refinement is too complicated to be understood immediately, it should be
redesigned. This may be an extreme example, but illustrates the need for review formats to be organization/
project specific. In another organization, where reviews of small inventions are held daily, there may not
any need to distribute the material to be reviewed more than a few hours in advance. Issues pertaining to
the proof review process must be carefully considered in order to create a proof review process that is
efficient and effective.

A workable procedure for organizing for the proof reviews process is: prior to a proof review, the
person whose material is to be reviewed distributes the material to be reviewed, along with the material to

Page 9-22 The Cleanroom Engineering Software Development Process 2/28/9191

_. Secton 9: Ckamroom Development Team Practices SET-[R70

Figure 9.5.5 While-loop Trace Table

function (x, y, and a integers)

f =(x 0 - x, y, a :=0, a*x +y, a)

program

1 while
2 x*O
3 do
4 xy:=x- 1,y+a
5 od

proof

term
Initial > 0 is reduced by 1 each iteration, so eventually whiletest x •0 fails
pass

whiletest true (prove (p -+ f) = (p -+ f g))

2 x*O x0oO x 1 =x 0 Y, =YO
4 x,y:=x- 1, y+a ;=x 1 -2 = y1 +ao
f x, y, a:= 0, a*x + y, a x2 0 x3 =0 Y3 = ao*x 2 + Y2
conditions: assignments:

xoO Ax 2 !O=x 0 OAx,-10 x3 =0 y3 =ao*X2+y 2
=X0 0 A Xo- I a0 = ao*(x - 1) + y +a.
=XoO*Axo> 1 =ao*(xo- 1)+yo+ao
= Xo> 0= aO*Xo+ yo

program function: (x > 0 -- x, y, a:= O, a*x + y, a)
which agrees with intended function when whiletest true.

pass
whiletest false (prove (- p -- f) = (~ p -+ I))

(x = 0- (x > 0 --+ x, y, a := x, a*x + y, a))
= (x =0 -- x, y, a := 0, a*O + y, a) = (x =0 -+ x, y, a := x, y, a)

that is, the identity function, as required.
pass

result pass comp

2/28/91 The Cleanroom Engineering Software Development Process Page 9-23

SET-IR70 Section 9: Cleanroom Development Team Practices

put the area of review into context, a sufficient amount of time before the review is to take place. In that
manner, all of the developers participating in the review have the opportunity to re-familiarize themselves
with the material. Depending on the organization and schedule, a sufficient time may be a few minutes or
a few days. At the review, the developer who created the material walks through the design or coding, with
comments being recorded by one of the other developers. Corrections may be suggested and action items
may be assigned. If numerous or non-trivial errors were found, then another review must be conducted.
Otherwise, the material does not need to be reviewed until it is refined again.

Section 9.7 Working With The Certification Team

The lines of communication between the Development and the Certification team are extremely clear
and simple. The Development team delivers code to the Certification team, and receives failure reports from
the Certification team. Of course, there are additional communications, such as the Certification team stating
that a code increment was successfully certified or that a certain increment must be re-developed, but the two
above-mentioned categories are the major ones. As the Development team completes the coding and
verification of an increment, the code is then delivered to the Certification team so it may be placed under
configuration control. If the code has been modified, then an Engineering Chahge Notice must be attached
to it. When failures are found in the code, be they compilation, linking or execution failures, failure reports
are filled out and given to the Development team so they may be resolved.

There are a few key points to be clarified here:

a) Certifiers do not modify the code. In fact, they have no reason to actually look at the source code.
b) All changes (due to failures, spec changes, enhancements, etc.) to the code are made by the

Development team.
c) Any enhancement (changes not due to failures) must be justified to a configuration control board.

Section 9.8 Working With The Specification Team

The Development and Specification team work together to develop the Functional (Black Box)
Specification Volume, and may interact when the Construction Plan is written. During actual development
or certification, the Development and Specification teams will only interact when the specifications have
been changed or when a request to change the specifications is made. When the specifications are changed,
the Specification team will publish a new version of the software specifications so that the Development (and
Certification) team will be aware of the new function for which a rule must be written and certified. If the
Development team determines that some part of the specifications may need to be changed, they submit a
request, in the form of a question or issue, which will be then be studied by the Specification team. The result
will be a response to the question or issue and, if the modification is deemed correct, a new set of software
specifications. It is vitally important that the Development team add nothing to the design or code that is
not in the specifications. For this reason, the Development team must wait until the specification change
request is approved before design or code reflecting that change is created.

Page 9-24 The Cleanroom Engineering Software Development Process 2/28191

SET-IR70

Section 10
Cleanroom Certification Team Practices

In this section, the Cleanroom Project cycle is examined from the vantage point of the Certification
team. In the Cleanroom environment, the Certification team has the following well-defined mission:

Given a system of programs which has been implemented and verified, conduct measurements to
determine how well the program satisfies the specification in such a way that the reliability of the
software can be certified.

In performing the measurements and certification, the Certification team is making use of the fact
that software use is stochastic. Therefore, if random samples of possible usages are drawn from the
population of the uses that the software will be subject to in performing its intended mission, statistical theory
can be used to estimate the reliability of the software.

In performing this mission, the Certification team is performing the engineering tasks defined in the
processes below

E 19: Develop Certification Tests for Increments l...j
E22: Build System With Increment i
E23: Certify Increment L...j.

The Specification team is responsible for developing and refining the specification (Process E14), but
members of the Certification team may well contribute to the development of Volume V - The Expected
Usage Profile. For this reason, the useful techniques for the development of usage profiles are discussed in
this section.

The Certification team also contributes to performing the work defined by the three processes that
have to do with understanding the problem and solution domains:

E 12: Understand Problem Domain
E 13: Understand Solution Domain
E2 1: Increase Understanding of Problem and Solution Domains as Required

The Certification team's principal effort is devoted to accomplishing the previously referenced processes
(E19, E22 and E23). Therefore, this section is devoted to discussing their performance of the engineering
tasks associated with these processes. In addition, the Certification team contributes to performing the
project overhead tasks as required. These include:

E7: Maintain Project Schedule
E8: Prepare for and Conduct Project Review
E9: Prepare and Submit S.atus Reports
E 11: Submit a Question or Issue

The Certification team is provided with a specification that contains all the information they require
to prepare tests. They are given the expected usage profile in the form of a Markov Model, and they have

2/28/91 The Cleanroom Engineering Software Development Process Page 10-1

SET-IR70 Section 10: Cleanroom Certifwcation Team Practices

all the informatic n required to develop test cases in Volume IV - User's Reference Manual. The Certification
team requires no knowledge of the rule (program) since the test regime used in the Cleanroom environment
is usage testing.

The Certification team develops a test plan and sampling plan which will guide them in determining
how many test cases are required for certifying the software, which is performed in process E19: Develop
Certification Tests for Increments 1 ...j. The Certification team can develop test cases for increments 1.. .j in
parallel with the Development team's design and implementation of increment j.

The Certification team is responsible for configuration management of the software system as it is
being developed. Therefore, when the Development team turns over a verified increment, they compile and
otherwise perform the tasks necessary to develop an executable system. They run test cases and when a
failure is observed, they prepare a Software Failure Report Eventually, when the Certification team
determines further testing is of marginal value, the accumulated Software Failure Reports are returned to the
Development team for resolution. The Certification team then waits for Engineering Change Notices, which
contain descriptions of the fixes to the observed failures, along with the modified.

The Certification team stores all failure data in a data base for analysis and later use by the
certification model. The certification model is run for each software system version in order to predict the
reliability of the next version of the system. The Certification team keeps the Engineering team manager
informed of certification progress. At each testing stage, the Certification team can make one of three
recommendations: (1) continue certification. (2) the desired reliability has been obtained so terminate
certification, or (3) the software for the increment as designed and implemented is faulty so itis best to discard
the current implementation and begin with a clean slate. A useful rule of thumb for making this latter
determination is if any deep design failure has been found which requires changes to any significant amount
of code or state data or if more than five failures per KLOC have been found, the current software should
be discarded and a new development effort initiated. If testing is continued, it will be necessary to start testing
in quality with all the associated hazards that this strategy entails.

All of these points will be discussed in greater detail in the following subsections:

10.1 Preparing the Sampling Plan
10.2 Preparing Test Cases: The Monte Carlo Method
10.3 Running Test Cases
10.4 Testing Results and Analysis
10.5 Working With the Certification Model
10.6 Configuration Management
10.7 Working With the Development Team
10.8 Working With the Specification Team
10.9 An Integrated Program of Usage Testing

10.1 Preparing the Sampling Plan

The sampling plan organizes the manner in which the certification for an increment is performed.
The Certification team must determine whether there will be stratified testing, and how the testing resources

Page 10-2 The Clea.mroom Engineering Software Development Process V28/91

- Section 10: Cleanroom Certifcation Team Practices SET-.R70

will be divided. For example, if there is a safety critical portion of a software system, it may be desirable
to 4ietermine a reliability for that subsystem, in addition to the reliability for the entire system. Additional
issues that must be considered when developing the sampling plan include the following:

a) Is control flow to be randomized?
b) Are data inputs to be randomized?
c) What is the expected failure rate?
d) What is a use?
e) What is the average size of a test case?
f) What are the units used in order to determine MTTF?
g) What is the desired reliability?
h) What is the time period available for the certification of the increment?
i) What are the resources available for the certification of the increment?

In preparing the sampling plan, the large body of knowledge that has been developed relative to
sampling should be considered to obtain the best results with the minimum of effort. For the statistical
inferences made based on the sample to be valid, samples must be chosen in such a way that they are
representative of the population. Factors to consider in designing the sampling plan are:

a) size of sample
b) draw samples with or without replacement
c) how to randomize selection of sample elements
d) how to manage selection of sample elements (the sampling plan)

In developing the sampling plan, there are two general strategies:

fixed design the design is fixed before sampling begins

sequential sampling a small random sample is selected and analyzed and on the basis of the
result, a decision is made to continue sampling and, if so, how

There are several useful fixed design sampling strategies as follows:

Unrestricted random sampling - a random sample is selected from the whole population by either

Simple random sampling Assign a different number to every element of population and
use random numbers to select the sample

Systematic Random Sampling Order the population and select a random starting point and
then select every n(th) element where the interval size (n) is
chosen so :he desired sample size is obtained

2/28/91 The Cleanroom Engineering Software Development Process Page 10-3

SET-IR70 Section 10: Cleanroom Certification Team Practices

Restricted random sampling The population is divided into groups (and perhaps the groups

are also subdivided) and random samples are either drawn
from each group or randomly selected groups

Multistage random sampling Random samples are drawn from subgroups which have

themselves been selected with equal probabilities, or with

probabilities proportionate to the relative size of the subgroup

or some other criterion

Stratified random sampling Random samples are drawn from every subgroup of the
population. The size of the sample from the subgroup may be:

(a) independent of the size of the subgroup (i.e., equal size),
(b) proportionate to the relative size of the subgroup or (c)

proportionate to the relative size of the subgroup and the

dispersion of the elements in the subgroup

Cluster sampling A random selection of subgroups is selected and all elements
in the subgroup are included in the final sample

Stratified cluster sampling A combination of stratified random sampling and cluster
sampling in more than two stages

There are several useful sequential sampling strategies. In sequential sampling, a small random

sample is selected and analyzed. The result is used to make a decision as to whether or not to continue to

sample and, if so, how. The samples may either be

in groups or

single items.

Selecting the sequential sampling plan to use is based on such factors as:

the characteristics of the population
the cost of taking the sample
the cost of processing the sample
the variance of the estimates

It is very important that the sampling plan be well thought out in advance to get the best possible
estimate of reliability over the entire domain of interest with the greatest efficiency.

Upon assessment of these issues, a report will be written which clearly outlines how certification will
occur for this increment. It will list a strategy, which is basically a division of resources for certain parts of

Page 10-4 The Cleanroom Engineering Software Development Process 2128/91

U

Section 10: Cleanroom Certiiaton Team Practices SET-IR70

the problem, and expected results, in terms of reliability. This plan will then serve as the basis for test cases

to be generated, executed and validated.

10.2 Preparing Test Cases: The Monte Carlo Method

The process of preparing test cases is divided into a number of activities, the most important of which
is the Monte Carlo method. The activities are:

a) Incremental Development
b) The Monte Carlo Method
c) The Test Generation Algorithm
d) Random Numbers
e) Test Case Generation

Incremental development leads to the following features:

a) Software is tested by increment,
b) It allows iterative assessment of software,
c) It allows early increments to be certified more thoroughly, and
d) It makes the testing effort more manageable.

The number of test cases per increment must be determined. It is a function of:

1) Budget,
2) Schedule, and
3) Desired M=TF for the increment.

The Monte Carlo technique is a procedure to obtain approximate evaluations of mathematical
expressions which are built up of one or more probability distribution functions. Monte Carlo is performed

by conducting a simulation experiment to determine some probabilistic property of a population of objects
or events by the use of random sampling applied to the components of the objects or eve'nts.

The Monte Carlo technique works as follows:

a) Plot the cumulative probability function (y axis will go from 0 to 1). The function can be discrete
or continuous.

b) Choose a random decimal between 0 and 1, which is the y value (to as many decimal places as
necessary/desirable). Find this point on the cumulative function.

c) Determine corresponding x axis point.
d) The value of x is the sample value of x.

2/28/91 The Cleanroom Engineering Software Development Process Page 10-5

SET-IR70 Section 10: Ckoanroom Certification Team Practices

The Monte Carlo technique is illustrated in Figure 10.2.1 for the continuous and discrete cases.

Figure 10.2.1 Continuous and Discrete Monte Carlo Method

Continuous Discrete

Random y F(x)x -'

Decimal -Random
Decimal

0 .3 .5 .7 1.0
Sample

The test case generation algorithm is given below:

start in initial state
while test case not complete

do
Randomly select a state transition from the present state using the Monte Carlo method
and the probabilities in the transition matrix for the row of the initial state.
Append the script for the state transition to the test case script.

if script includes randomly generating inputs according to their usage profile that are
necessary for that script
then

generate them
fi

Move to the row of the new state
if this state is the final state OR test case is of determined length (which can also be
randomly determined)
then

test case complete

od

Page 10-6 The Cleanroom Engineering Software Development Process 2/28/91

. Section 10: Cleanroom Certifiwation Team Practices SET-ER70

Test paths are randomly generated according to state transition probabilities. Input are generated
according to the probability of use. This permits the statistical generation of stimuli (e.g., keystrokes, sensor
readings) and statistical interpretation of testing results. Figure 10.2.2 shows a fragment of a program
designed to conduct a Monte Carlo simulation to generate test scripts at random. Figure 10.2.3 shows the
test script fragment generated by the program fragment shown in Figure 10.2.2. These fragments are then
combined to form full test scripts. In generating test scripts, it is sometimes more efficient from the
standpoint of test evaluation to remove the variability of test inputs by fixing them. This eases validation
of test results, but biases the approach somewhat, since randomness is only in terms of control flow. One
should always try to have variability in control flow and input.

Figure 10.2.2 A Typical Script Generation Rule

x - ran(O)
if x >.5
then
write "Move A west"

else
write "Move A east"

fi
write "Move B to A"
x = ran(l)
if x >.25
then
write "Put new train at D"

else
write "Put new train at A"

fi

Figure 10.2.3 A Typical Test Script Fragment

State 6 to State 8 -
Move A west
Move B to A
Put new train at D

2/28/91 The Cleanroom Engineering Software Development Process Page 10-7

SET-IR70 Section 10: Cleanroom Ceatfwcation Team Practices

The test cases themselves are:

- Based on transition probability (Markov) matrix,

- Some likely sequences may not be selected due to the fact that state transitions and inputs are

selected randomly, even though they are selected in the same proportion they are likely to occur

in actual usage,

- The present state tells us which stimuli are possible, and their probabilities, and
- The stimulus selected will direct us to the correct new state (which may be the same).

A test script is a list of the combination of stimuli which lead to a state transition. The selection of

a particular script is based on the state transition selected. A test case can be made up of multiple state

transitions. Therefore, it can be made up of a number of test scripts. Inputs in a test script may be selected

randomly, but other stimuli should be identical for all invocations of a particular state transition. For

example, if two particular buttons need to be pushed for a specific state transition, those buttons are pushed.

When a random number is generated, the stimulus corresponding to that number while in a specific

state is put into the test script. The system should now be in the next (maybe same) state. The stimuli can

be keystrokes, sensor readings or input data. The next stimulus is selected by generating another random

number and finding the stimulus corresponding to it while in the new state. In this way, one is constantly

traversing the transition matrix to keep track of the present state. An example of a test case appears in Figure

10.2.4.

Figure 10.2.4 A Test Case

Test Case - Examples

Test Case: 3 Pass_ Fail

119 1. SI_Initial
120 2. SlDownArrow
121 3. Si_Enter_CertificationModel
122 4. S5_Initial
123 5. S5_F3
124 6. S5_F1
125 7. SlInitial
126 8. SlDownArrow
127 9. Sl Down Arrow
128 10. S1_EnterExit

10.3 Running Test Cases

The script for a test case is generated by the Markov Transition matrix and a random number

generator. The test cases are keyed in by the tester exactly as the script is written. The one checks if the result

is the expected result. Mistakes in pressing the keys are acceptable, since it is just a random change in the

Page 10-8 The Cleanroom Engineering Software Development Process 2/28/91

Section 10: Cleanroom Certication Team Practices SET-IR70

test script. Intentional or planned mistakes should not occur, since that removes the randomness from test
case. The software must still work in the desired manner given any stimuli, correct or incorrect.

Some portion of the stimuli can be set aside for random blunders, say 0.5%. These blunders include:
hitting neighboring keys and taking imperfect program paths. The blunders are planned during the test case
generation.

Results of test cases need to be maintained. A typical form on which solutions can be manually

recorded is shown in Figure 10.3.1. The exact format will depend on the software being certified. In many
instances, it is worth the effort to develop a means to record the information in an electronic file so it can be
easily compared to the expected results.

Figure 10.3.1 Test Solution

Test Scenario Number:

Enter the expected result in the space provided, or attach additional sheets that clearly describe which state
transition the expected result is for.

State Transition 1 Result:
State Transition 2 Result:
State Transition 3 Result:

Expected Result:

10.4 Testing Results and Analysis

When a test case is executed, two types of results appear. One is the program output, which is the
responses generated by the program being certified. The second is the certification data, which is the

information necessary to run the certification model.

Once the program output is generated, where screens are written to, text is printed, etc., the certifier

must determine whether the test has executed correctly. To do this, the expected result is compared to the
actual result. If an inconsistency is found, and the test case failed, a failure report is prepared and submitted
to the state data file. A typical failure report is described and illustrated in Figure 10.4.1.

2/28/91 The Cleanroom Engineering Software Development Process Page 10-9

SET-IR70 Section 10: Cleanroom Certlfcation Team Practices

Figure 10.4.1 Software Failure Report

SOFTWARE FAILURE REPORT

Project Name: Date:
SFR Number: Certifier's Name:
Increment Number: Software Version Number:
(if new version, number of engineering changes made):

Number and description of test scenario:

Type of observed failure: Compilation: Assembly:
Execution:

Location of Failure in Scenario:

Test Results Prior to Scenario:

Description of observed failure:

Specification reference to observed failure:

Modules suspected of causing failure:

Attached Materials:

Page 10.-1 The Cleanroom Engineering Software Development Process 2/28/91

Section 10: Cleanroom Certiication Team Practices SET-ER70

For every test case executed, a body of information must be gathered in order to run the certification
model. The system version, test case executed (and whether it was the first time the test case was executed),
the execution time, whether the test case failed, failure report number, and type of failure (compilation,
linking or execution) must be recorded. In this way, the reliability of the system can be determined in a variety
of ways (with compilation failures, without counting failures from retrograded tests, etc.). Since a large
number of categories are being handled for each test case, and there are a variety of ways in which this data
should be analyzed, storing this information in a relational data base is useful.

When enough failures have accumulated, failure reports can be given to the Development team so
they may correct the failures. If failures have not been found, and the software system has reached its
reliability target, the certification of the next increment can begin.

10.5 Working With The Certification Model

Actual reliability results are entered into the Reliability Manager in order to project reliability for the
next increment or software system version. Additionally, actual reliability results can be compared to
projections in order to determine the need for additional testing or redevelopment.

The certification model provides an actual assessment of the reliability of the product in terms of its
operational use. In that manner, one can clearly project how the software system will work in the real world.

The Cleanroom Reliability Manager (CRM) is a tool that has been created in fulfillment of another
portion of this task. Given test execution results (version number, execution time, pass or fail), the CRM
tool is used to calculate a projected reliability for the next version of the software system in terms of Mean
Time to Failure. In the case where the final test scenarios were executed and a failure was not found, the
execution time to be entered into the model for that series of scenarios will be double the execution time.
There is a min-max argument that justifies this correctness of this extrapolation. The certification model is
an exponential growth model, which is based on the fact that selecting test cases according to the operational
profile will tend to find the most frequent failures first. When frequent failures are removed, the Mean Time
to Failure will grow at an exponential rate. The power of testing according to a model is that it will give a
more accurate projection of the future reliability of the software system.

Certification can stop as a result of one of two conditions. First, the reliability goal for the increment
may have been reached. In this case, the certification of the next increment may begin. Second, the failure
density may be above the threshold to continue testing. Five failures per KLOC is considered to be a fair
failure density limit. In this case, the increment should be redesigned, as it will cost less to start over again
than it will to continue to try to test quality into the product. Otherwise, certification should not be considered
complete, which means additional test scenarios may need to be generated randomly.

2/28/91 The Cleanroom Engineering Software Development Process Page 10-11

SET-IR70 Section 10: Cleanroom Certif'cation Team Practices

10.6 Configuration Management

Since developers cannot compile (let alone test) their code, the Certification team is responsible for
all configuration management. The certifiers must log in all new or changed components, while specifically
keeping track of the change history of each component. This means all modified components need to have
an engineering change notice attached. Engineering change notices are described and illustrated in Figure
10.6.1. All components must then be compiled and assembled. Failures found during compilation and
assembly result in failure reports being submitted and a corresponding entry being entered with the rest of
the certification data.

If there are software initiation procedures, they must also be followed. Only then can test cases be
executed on the code.

10.7 Working With the Development Team

The lines of communication between the Certification and the Development teams are clear and
simple. The Certification team receives code from the Development team, and returns failure reports to the
Development team. Of course, there are additional communications, such as the Certification team stating
that a code increment was successfully certified or that a certain increment must be re-developed, but the two
above-mentioned categories are the major ones. As the Development team completes the coding and
verification of an increment, the code is then delivered to the Certification team so it may be placed under
configuration control. If the code has been modified, then an Engineering Change Notice must be attached
to it. When failures are found in the code, be they compilation, linking or execution failures, failure reports
are filled out and given to the Development team so they may be resolved.

There are a few key points to be clarified here:

a) Certifiers do not modify the code. In fact, they have no reason to actually look at the source code.
b) All changes (due to failures, spec changes, enhancements, etc.) to the code are made by the

Development team.
c) Any enhancement (changes not due to failures) must be justified to a configuration control board.

10.8 Working With the Specification Team

The Certification and Specification team work together to develop the Usage Profile Volume and
may interact when the Construction Plan is written. During actual development or certification, the
Certification and Specification teams only interact when the specifications are changed, or when a request
to change the specifications is made. When the specifications are changed, the Specification team publishes
a new version of the software specifications so that the Certification (and Development) team are aware of
the new function for which a rule must be written and certified. If the Certification team determines that some
part of the specification needs to be changed, they submit a request in the form of a question or issue, which

Page 10-12 The Cleanroom Engineering Software Development Process 2/28/91

- $Sctieo 10: Clknroom Cerntleation Team Pracdces SET.R70

Figure 10.6.1 Engineering Change Notice

ENGINEERING CHANGE NOTICE

Developer's Name: Date:
ECN Number:. Authorizing signature:
Type of Resolution:

failure corrected
change implemented
no change required
other (Describe):

To be completed if ECN is a failure or change
Failure Reports fixed by this ECN:

Textual description of ECN:

Routines modified by ECN:

Changes made to each routine (attach additional sheets if necessary):

Source of modification (check one):
Requirements: Specifications:__ Black box design:-
State box design: Clear box design: PDL:_
Code: Previous modification:__ Other:

2123/91 The Cleanroom Engineering Software Development Process Page 10-13

SET-IR70 Section 10: Cleanroom Certi]fcation Team Practices

will be studied by the Specification team. The result will be a response to the question or issue and, if the
modification is deemed correct, a new set of software specifications.

10.9 An Integrated Program of Usage Testing

For most projects, the testing budget is limited. It may be possible that a sufficient budget is not
available to certify the reliability of the software system created to the desired level. Additionally, an
organization may not be sure whether the usage profile that the software was certified is correct. In these
cases, it is desirable to have a number of levels of testing.

First, the Certification team does testing in the laboratory, certifying the reliability of the software
to the limit that the sampling strategy or budget allow. Once that is completed, the software is distributed
to a number of actual users of the system. This level of testing is called beta testing. These users may be
inside or outside the organization. They are using the system with the knowledge that this is a pre-release
version of the software. The software is then distributed to a limited number of clients in the field. These
organizations will use the software in their day-to-day tasks. The incentives for organizations to be beta or
limited field-use test sites is a management issue. Finally, the software is distributed for full field use, where
the reliability of the software will have been certified to some level, based on the laboratory, beta and limited
field-use testing.

The objective of this three-level certification process is to certify the software to the highest
possible level at the lowest possible cost. In this manner, the software product is tested thoroughly with
three different usage profiles (although ideally they will be the same). During the laboratory, beta and limited
field use testing processes, execution time and failures must be returned to the Certification team so the
Development team may correct the higher frequency failures and for the certifiers to project the future
reliability of the system. Extremely low frequency failures typically may not be corrected if the probability
of creating a new error is considered to be higher thart the probability of making the right correction. The
reliability projections for a software system using this three-pronged approach will typically appear as shown
in Figure 10.9.1. The reliability of the system will typically decrease at the commencement of a new level
of testing. This is a result of the new or different usage profile. But as those failures are resolved, the
reliability should increase exponentially.

Page 10-14 The Ckemnroom Engineering Software Development Process 2/28/91

Sectie 10: Claa-om Cernkcadn Team Practices SET-MR70

Figure 10.9.1 Reliability Projections for a Three-Pronged Testing Approach

M=TF

A 2

A1

Test
Cases

!

alpha beta field use

An efficient testing strategy will minimize A I and A2

2V28/91 The Cleanroom Engineering Software Development Process Page 10-15

SET-IR70 Section 10: Cleanroom Certifcation Team Practices

Page 10-16 The Cleanroom Engineering Software Development Process 2/28/91

S-SET-R"O

APPENDIX A:

This appendix contains the list of completion conditions for each of the Cleanroom processes. The forms
are suitable for distribution to the engineering teams with task assignments. In this way the team can use
the form to record progress and report completion. The form asks for signatures of the entire team to make
clear the team responsibility for successfully completing the process.

2128/91 The Cleanroom E'ig*.eering Software Development Process Psge i

Completion Condition Checklist:

Project: Process: EO: Cleanroom

Engineering Team Manager: Iteration #:

Date Completion ConditionCompleted:

1. Have all necessary measurements been made?

2. Have all completion conditions for all six sub-processes (El, E2, E3, E4, E5
and E6) been achieved?

Team members' signatures

Manager's signature

Completion Condition Checklist:
Project: Process: El: Project Invocation

Engineering Team Manager: Iteration #:

Date Completion ConditionCompleted:

1. Have all initial staff members been put on a team?

2. Has the initial Project Charter been accepted?

3. Has the software development plan been created and accepted?

4. Has the initial project schedule been created?

5. Have initial task assignments been given?

6. Have all additions to, deletions from and modifications of the state data been
completed?

7. Have all necessary measures been gathered?

8. Have all necessary responses been submitted?

9. Have all pertinent reviews for this process been completed?

10. Have all action items generated during reviews that pertain to this process
been completed?

Team members' signatures

Manager's signature

Completion Condition Checklist:
Project: Process: E2: Program Management

Engineering Team Manager: Iteration #:

Date Completion Condition
Completed:

1. Have all necessary measures been gathered?

2. Have all completion conditions for all three subprocesses (E7, E8 and E9) been
achieved?

3. Is the project completed?

Team members' signatures

Manager's signature

Completion Condition Checklist:
Project: Process: E3: Project Information Management

Engineering Team Manager: Iteration #:

Date Completion ConditionCompleted:

1. Have all necessary measures been gathered?

2. Have all completion conditions for both subprocesses (ElO and El i) been
achieved?

3. Is the project completed?

Team members' signatures

Manager's signature

-I

Completion Condition Checklist:
Project: Process: E4: Software Solution Specification

Engineering Team Manager: Iteration #:

Date Completion Condition
Completed:

1. Have all necessary measures been gathered?

2. Have the completion conditions of all four sub-processes (E12, E13, E14, and
E15) been achieved?

3. If the project was suspended, has all material been archived in a manner that
will be useful to individuals who will need the material in the future?

Team members' signatures

Manager's signature

Completion Condition Checklist:
E5: Software Development and

Project: Process: Certification

Engineering Team Manager: Iteration #:

Date Completion ConditionCompleted:

1. Have all necessary measures been gathered?

2. Have all completion conditions from both subprocesses (E16 and E17) been
achieved (This is equivalent to asking whether all increments have been
developed, verified and certified)?

Team members' signatures

Manager's signature

Completion Condition Checklist:
Project: Process: E6: Prepare Final Project Releases

Engineering Team Manager: Iteration #:

Date Completion ConditionCompleted:

1. Are all deliverables complete and consistent?

2. Have all necessary measures been gathered?

3. Have all additions to, deletions from and modifications to the state data been
completed?

4. Have all responses from the process been submitted?

5. Have all pertinent reviews for this process been completed?

6. Have all action items generated during reviews that pertain to this process been
completed?

Team members' signatures

Manager's signature

Completion Condition Checklist:
Project: Process: E7: Maintain Project Schedule

Engineering Team Manager: Iteration #:

Date Completion ConditionCompleted:

1. Have all defined task assignments been given a completion schedule, as well as
staff and resource allocations?

2. Are all task assignments (internal schedule) consistent with the project

schedule and the Master Project Schedule (external schedule)?

3. Have all known milestones been put on the schedule?

4. Is the project schedule complete and consistent in relationship to the Master
Project Schedule?

5. Has the project schedule been published due to changes in the Master Project
Schedule or by time interval?

6. Does the project schedule list all sponsor requested reviews?

7. Have all additions to, deletions from and modifications of the state data been
made?

8. Have all necessary measures been gathered?

9. Have all external responses been submitted?

10. Have all pertinent reviews for this process been completed?

11. Have all action items generated during reviews that pertain to this process
been completed?

Team members' signatures

Manager's signature

Completion Condition Checklist:
E8: Prepare For and Conduct

Project: Process: Project Review

Engineering Team Manager: Iteration #:

Date Completion Condition
Completed:

1. Has the Engineering team manager determined that the Specification,
Development and Certification teams have sufficiently prepared for the project
review?

2. Have all additions to, deletions from and modifications of the state data been
completed?

3. Have all external responses been submitted?

4. Have all necessary measures been gathered?

5. Is the sponsor satisfied that the review is complete? If not, has another review
been scheduled?

6. Have all action items from the review been assigned?

Team members' signatures

Manager's signature

Completion Condition Checklist:
E9: Prepare and Submit Project

Project: Process: Status Reports

Engineering Team Manager: Iteration #:

Date Completion Condition
Completed:

1. Are the Project Status Reports complete and accurate for the time period for

which the status report is being submitted?

2. Are consistent criteria being used to complete the Project Status Reports?

3. Have all Project Status Reports for the time period been completed and
submitted?

4. Have all additions to, deletions from and modifications of the state data been
made?

5. Have all external responses been submitted?

6. Have all necessary measures been gathered?

7. Have all pertinent reviews for this process been completed?

8. Have all action items generated during reviews that pertain to this process been
completed?

Team members' signatures

Manager's signature

zz • mia mai mam a ia i n • m • m • m

Completion Condition Checklist:
Project: Process: ElO: Receive Stimuli

Engineering Team Manager: Iteration #:

Date Completion Condition
Completed:

1. Have all stimuli been moved to all of the correct state data?
2. Have all other additions to, deletions from and modifications of the state data
been completed?

3. Have all necessary measures been gathered?

4. Have all engineering team members who need the information received been
notified?

Team members' signatures

Mahager's signature

Completion Condition Checklist:
Project: Process: Eli: Submit a Question or Issue

Engineering Team Manager: Iteration #:

Date Completion ConditionCompleted:

1. Have all additions to, deletions from and modifications of the state data been
made?

2. Have all questions that cannot be resolved by the engineering team been
formally submitted as responses?

3. Have all necessary measures been made?

Team members' signatures

Manager's signature

I

Completion Condition Checklist:
Project: Process: E12: Understand Problem Domain

Engineering Team Manager: Iteration #:

Date Completion ConditionCompleted:

1. Has the project manager determined that a sufficient understanding of the

problem domain has been gained to complete this process?

2. Has the Specification team developed an approved copy of the specifications?

3. Is there a clear definition of what is to be accomplished by the software?

4. Has a clear description of all external interfaces for the software (converting all
real-world stimuli into digital stimuli and digital responses into real-world
responses) been determined?

5. Is there a clear model which describes the problem domain?

6. Has the model been judged as adequate to describe the problem domain?

7. Do requirements express conceptual integrity (includes requirements generated
during this activity as well as previously existing requirements)?

8. Have all additions to, deletions from and modifications of the state data been
made?

9. Have all necessary measures been gathered?

10. Have all external responses been submitted?

11. Have all pertinent reviews for this process been completed (for example, if
this process is following 2167A, the System Requirements Review and the System
Design Review need to have been completed)?

12. Have all action items generated during reviews that pertain to this prcess
been completed?

Team members' signatures

Manager's signature

Completion Condition Checklist:

Project: . Process: E13: Understand Solution Domain

Engineering Team Manager: Iteration #:

Date Completion ConditionCompleted:

1. Has the project manager determined that a sufficient understanding of the

solution domain has been gained to complete this process?

2. Has the Specification team developed an approved copy of the specifications?

3. Is there a clear definition of what is to be accomplished by the software?

4. Has a clear description of all external interfaces .for the software (converting all
real-world stimuli into digital stimuli and digital responses into real-world
responses) been determined?

5. Is there a clear model which describes the solution domain?

6. Has the model been judged as adequate to describe the solution domain?

7. Have all pertinent reviews for this process been completed (for example, if this
process is following 2167A, the System Requirements Review and the System
Design Review need to have been completed)?

8. Have all additions to, deletions from and modifications of the state data been
made?

9. Have all necessary measures been gathered?

10. Have all external responses been submitted?

11. Have all action items generated during reviews that pertain to this process
been completed?

Team members' signatures

Manager's signature

Completion Condition Checklist:
Project: Process: E14: Write Specifications

Engineering Team Manager: Iteration #:

Date Completion ConditionCompleted:

1. Are the Specifications complete, consistent and unambiguous to the extent
possible?

2. Have the Specifications been reviewed and accepted by the Certification and
Development teams?

3. Has the Specification team demonstrated that the Specifications describe a cost
effective solution?

4. Is the present version of the Specifications consistent with the Master Project
Schedule, Project Charter, etc.?

5. Have the Specifications been placed under configuration management?

6. Are the Specifications consistent with the system requirements, and any
software requirements that were submitted by management?

7. Are the Specifications for the software consistent with the rest of the system,
including hardware and human activities (for example, in terms of 2167A, these
issues would need to be resolved by the System/Segment Design Document)?

8. Are the Specifications consistent with the software development plan?

9. Have the five volumes of the Specifications been placed in the correct state
data?

10. Have all necessary measures been gathered?

11. Have all pertinent reviews for this process been completed?

12. Have all action items generated during reviews that pertain to this process
been completed?

Team members' signatures

Manager's signature

Completion Condition Checklist:
Project: Process: E15: Write Construction Plan

Engineering Team Manager: Iteration #:

Date Completion ConditionCompleted:

1. Will the Construction Plan meet the following constraints:
a) resources,
b) budget,
c) schedule,
d) provides the level of quality desired for the project?

2. Has the Construction Plan decomposed the project into the best set of
executable increments from the following standpoints:

a) Size suitable to development teams' capabilities (all modules should
normally be under 10 KSLOC barring exceptional circumstances),
b) Complexity suitable to certification team's capabilities,
c) Reuse,
d) Prototyping,
e) Complexity/size of the predicted solution domain,
f) Hardware domain/operating environment of the system
to be implemented,
g) Client/deliverable obligations?

3. Are the Specifications consistent with the software development plan?

4. Has the Construction Plan been placed in the correct state data?

5. Have all necessary measures been gathered?

6. Have all pertinent reviews for this process been completed?

7. Have all action items generated during reviews that pertain to this process
been completed?

Team members' signatures

Manager's signature

I

Completion Condition Checklist:
Project: Process: E16: Increment Development

Engineering Team Manager: Iteration #:

Date Completion Condition
Completed:

1. Have all necessary measures been gathered?

2. Have all completion conditions for all four sub-processes (E18, E19, E20,
E21) been achieved?

Team members' signatures

Manager's signature

Completion Condition Checklist:
Project: Process: E17: Increment Certification

Engineering Team Manager: Iteration #:

Date Completion ConditionCompleted:

1. Have all necessary measures been gathered?

2. Have all completion conditions for all four sub-processes (E21, E22, E23,
E24) been achieved?

Team members' signatures

Manager's signature

I

Completion Condition Checklist:
Project: Process: E18: Develop Increment i

Engineering Team Manager: Iteration #:

Date Completion Condition
Completed:

Black. State and Clear boxes and code

1. Have team reviews been held for all boxes, trade studies and code?

2. Have all boxes, trade studies and code passed their final review?

3. Have all project/installation standards for design languages and code been
adhered to, including:

a) Using only the four basic structures
b) Following language syntax conventions
c) Providing function commentary where needed?

4. Have all pertinent reviews for this process been completed?

5. Have all action items generated during reviews that pertain to this process been
completed?

6. Are the items developed consistent with the software development plan?

Black boxes
7. Have all black box functions been clearly defined in terms of stimulus
histories, and have been defined using an acceptable format?

8. Have all black box functions been verified to their specification (Note: A

higher level clear box is a lower level black box's specification)?

9. Does the black box function process all stimuli values, both valid and invalid?

State boxes
10. Have all state box functions been validated to be equivalent to their black box
functions?

11. Does the state box function process all stimuli values, both valid and invalid
leaving the state data in a valid state?

Team members' signatures

Manager's signature

Completion Condition Checklist: E18: Develop Increment i
Page 2:

Date Completion ConditionCompleted:

12. Have trade studies been conducted for all state data decisions:
a) For elaboration at the selected level in the usage hierarchy?
b) Does state data abstraction have right balance between execution speed,
performance and verifiability?

13. Has transaction closure been obtained for all state boxes?

Clear boxes
14. Have all clear box functions been verified to be equivalent to their state box
functions?

15. Are all interfaces in the usage hierarchy well defined?

16. Has transaction closure been obtained for all clear boxes?

17. For concurrent clear boxes, has an appropriate resolve function been
defined?

18. Have all opportunities for common services been evaluated to determine
proper modularization?

Qode
19. Have all procedures in the increment been verified/code read by more than
one team member?

20. Has code for all procedures been developed by stepwise refinement?

21. Have all refinements been proven:
a) Simple ones by direct assertion?
b) Complicated ones by formal proof?

Overall
22. Is the increment complete according to the items listed in the Construction
Plan (Volume 6 of the Specifications)?
23. Have all state data in the Software Development Files been correctly added,
modified or deleted?

24. Have all necessary measures been gathered?

25. Have all responses been submitted?

Team members' signatures

Manager's signature

Completion Condition Checklist:
E19: Develop Certification Tests

Project: Process: for Increments l..i

Engineering Team Manager: Iteration #:

Date Completion Condition
Completed:

1. Do test scenarios reflect the operational profile of the software to be tested?

2. Can thne results of executing all test scenarios be validated?

3. Have test passage criteria for the increment (such as number of test scenarios,
failures or reliability goals) been determined and corresponding test information
generated?

4. Have expected results been generated, and passage criteria determined for
each test case?

5. Have sufficient test scenarios been generated to certify the increment to the
desired level of reliability, given the expected rate of failure?

6. Is the increment complete according to the items listed in the Construction
Plan (Volume 6 of the Specifications)?

7. Has all state data in the Software Certification Files been correctly added,
changed or deleted?

8. Have all pertinent reviews for this process been completed?

9. Have all action items generated during reviews that pertain to this process
been completed?

Team members' signatures

Manager's signature

Completion Condition Checklist:

Project: Process: E20: Update Specifications

Engineering Team Manager: _ Iteration #:

Date Completion ConditionCompleted:

1. Does the present version of the Specifications represent the precise system the
Development team is implementing and the Certification team is certifying?

2. Is the present version of the Specifications consistent with the Master Project
Schedule, Project Charter, etc.?

3. Is the present version of the Specifications consistent with the software
development plan?

4. Are the Specifications for the software consistent with the rest of the system,
including hardware and human activities (for example, in terms of 2167A, these
issues would need to be resolved by the System/Segment Design Document)?

5. Have all pertinent reviews for this process been completed?

6. Have all action items generated during reviews that pertain to this process been
completed?

7. Have all additions, changes or deletions from the Software Specification Files
been correctly done?

Team members' signatures

Manager's signature

1

Completion Condition Checklist:
E2 1: Increase Understanding of Problem

Project: Process: and Solution Domains as Required

Engineering Team Manager: Iteration #:

Date Completion Condition
Completed:

1. Has the project manager determined that a sufficient understanding of the

problem and solution domains have been gained to continue with the project?

2. Have solutions that effect the entire team been disseminated?

3. Have all pertinent reviews for this process been completed?

4. Have all action items generated during reviews that pertain to this process
been completed?

5. Have all information to be preserved been placed in the correct state data?

6. Have all external responses been submitted?

Team members' signatures

Manager's signature

Completion Condition Checklist:
Project: Process: E22: Build System with Increment j

Engineering Team Manager: Iteration #:

Date Completion ConditionCompleted:

1. Have all components necessary to build increment j been received?

2. Are all components under configuration control?

3. Have all components received been compiled successfully?

4. Have all corr ?onents received been assembled successfully with the existing
system into an executable system?

5. Have all faults found during compilation and linking been noted on failure
report forms and returned to the Development team?

6. Does every changed component have a corresponding Engineering Change
Notice?

7. is the process complete in regards to what is described in the Construction
Plan (Volume 6 of the Specifications)?

8. Have all information to be preserved been placed in the correct state data?

9. Has neccesary metrics been gathered?

10. Have all pertinent reviews for this process been completed (for example, if
the project is following 2167A, the Function and Physical Configuration Audit
needs to be completed)?

11. Have all action items generated during reviews that pertain to this process
been completed?

Team members' signatures

Manager's signature

Completion Condition Checklist:
Project: Process: E23: Certify Increments 1..j

Engineering Team Manager: Iteration #:

Date Completion ConditionCompleted:

1. Have - id test executions been validated with the expected result for that test
case?

2. Has testing been stopped for one of the following reasons:
a) All test scenarios executed,
b) Observed failures to be corrected by Development team,
c) Management decision?

3. Have all failures found by the certification team led to a Failure Report being
put in the Failure Report File, which will lead to Development team resolution of
the Failure Report?

4. Is the process complete in regards to what is described in the Construction
Plan (Volume 6 of the Specifications)?

5. Have all additions, deletions or modifications to the state data been
completed?

6. Have all necessary measures been gathered?

7. Have all pertinent reviews for this process been completed?

8. Have all action items generated during reviews that pertain to this process
been completed?

Team members' signatures

Manager's signature

Completion Condition Checklist:
Project: Process: E24: Correct Code Increments l..j

Engineering Team Manager: Iteration #:

Date Completion ConditionCompleted:

1. Have all Software Failure Reports received by the Development team been

resolved?

2. Have engineering changes made to the code been carefully noted?

3. Have all changes to the code been verified by Development team members, as
well as by the Development team as a whole?

4. Has every change made to the code also been propagated back throughout the
clear, state and black box designs?

5. Has an Engineering Change Notice been completed for every modification to
the code?

6. Have all pertinent reviews for this process been completed?

7. Have all action items generated during reviews that pertain to this process
been completed?

Team members' signatures

Manager's signature

